

Table of Contents

Getting to know (and love) AGS .. 3

Introduction... 3
History of the Adventure Game.. 5
About This Book... 8
System Requirements.. 10
Installing AGS .. 10
Creating Your First Game... 12
Running Your Game... 14
Summary... 21

The AGS Editor .. 23
The Editor ... 23
Summary... 29

Sprites, Views, and Characters ... 31
Sprites ... 31
Views .. 35
Characters ... 42
Summary... 45

Rooms and Events... 47
Simple Backgrounds ... 47
Scrolling Backgrounds.. 49
Animating Backgrounds ... 51
Walkable Areas... 52
Walk-Behinds ... 54
Regions ... 57
Room Edges.. 65
Lighting... 70
Scaling... 70
Room Transitions.. 71
Summary... 77

Interacting with Your World... 79
Interaction ... 79
Hotspots .. 80
Objects .. 83
Inventory Items ... 92
Using Inventory Items... 97
Non-Player Characters (NPC)... 102
Summary... 110

Sounds and Music (Make Some Noise!) .. 111
Sound effects... 111
Background Music .. 114

Game Design with AGS

Speech... 115
Summary... 118

Some other stuff.. 119
General Settings.. 119
Summary... 123

Chapter 0
(Yes, we’re programmers)

Getting to know (and love) AGS

Introduction

AGS, or Adventure Game Studio, is a feature-rich application that allows you to
create point-and-click adventure games. If you remember games from the late
1980s and early 1990s like King's Quest, Quest for Glory, Monkey Island, and
Maniac Mansion (just to name a few) then you know the types of games we're
talking about. AGS provides you with an simple, intuitive interface that you can
use to create games just like those, and, with enough creativity, you can use AGS
to make games that equal (if not surpass) those professional quality games!

AGS was created by Chris Jones in 1997 as “Adventure Creator.” Back then,
Adventure Creator was an MS-DOS-based program, it didn't have mouse support
and it only allowed very primitive graphics. Step by step, little by little,
Adventure Creator evolved from this initial, featureless program into Adventure
Game Studio, which now supports high-res graphics, its games can run on
multiple operating systems, it has fully integrated sound and video, and it can
support thousands of sprites, hundreds of rooms, unlimited characters, and even
customized mouse cursors, GUIs, and other interface elements. Plus, AGS has an
extremely active user community, so help, criticism, and play testers are never
more than a forum post away. And Chris Jones still supports AGS and provides
updates and patches to it on a regular basis.

How much does AGS cost? That's the best part. It's FREE! Isn't that the best
kind of hobby to get into? Even if you decide to write a commercial game for
profit, AGS is still free*!

* AGS itself is 100% free, but some of the internal pieces of AGS (like the MP3
decoder, the graphics and sound subsystems, some of the fonts that AGS uses,
etc.) weren't written by Chris Jones, and therefore have their own license
agreements that you would need to consider if you released your game for profit.
For more information you can visit the AGS license page at
http://adventuregamestudio.co.uk/aclegal.htm)

Hundreds, if not thousands, of games have been created with AGS over the years,
and they range from very amateur games on the low end, to professional quality
commercial games on the high end. Here are just a few examples of games that
were made using AGS:

Game Design with AGS

4

Trilby’s Notes

Trilby’s Notes (http://www.fullyramblomatic.com/notes) was created by Ben
Croshaw, aka Yahtzee, and is part of a series of adventure games, collectively
known as “Chzo Mythos.” The series consists of four games, with Trilby’s Notes
being the third installment. Unlike most games written with AGS, Trilby’s Notes
is unique in that the player doesn’t use a mouse to control the game. Instead, the
action is controlled much like the early Sierra games, where the player moves the
character with the arrow keys and types commands he or she wishes the character
to perform.

Reality on the Norm series

Easily the largest series of games written with AGS, Reality on the Norm (RoN)
(http://www.realityonthenorm.info) is a collaborative collection of games where
anyone can create a game and add it to the series. The series takes place in a
fictional place called Reality on the Norm, and the series has several recurring
characters and themes. The first game was called “Lunchtime of the Damned”
(created by none other than Ben Croshaw) and it was about a young kid named

Getting to know (and love) AGS

5

Davy Jones and his zombie. Since that first game, no less than 90 games have
been created in the RoN universe, written and created by dozens of people, and
characters ranging from Death to Bill Cosby to David Hasselhoff to Commander
Keen have visited RoN.

AGDI Games

As you can imagine, the quality of games written with AGS varies widely from
game to game. Few, however, have the same feel as a professionally written
game (which is to be expected, since most AGS users don’t have the same
production budget as a professional game company!). Games from AGDI
(Anonymous Game Developers Interactive) break that typical mold, however.
AGDI (http://www.agdinteractive.com) is a group of individuals who are
“determined to revive the adventure game genre.” They make beautifully crafted
adventure games, containing stunning artwork, professional quality music, and
talented voice acting. AGDI has released three remakes of classic Sierra games:
King’s Quest I, Kings Quest II, and Quest for Glory II. These games are truly
works of art and are just as much fun to play as their original counterparts were.
Each game stays true to the original classic, but adds new plot elements, puzzles,
and in some cases even new characters to meet. AGDI even got Josh Mandel, the
voice of King Graham in the original King’s Quest games from Sierra, to reprise
his role as King Graham in both of their remakes. AGDI also has made an
original game called Al Emmo and the Lost Dutchman’s Mine. All these games
were created using AGS.

History of the Adventure Game

Video Games
Before there were adventure games, people entertained themselves by drawing on
cave walls and playing drums by the campfire. Shortly after this, someone
invented a computer and decided that it might be fun to play games on it.

Computer Space was the first commercial video game, released in 1971, and boy
was it a doozy. It was a coin-operated machine that housed a 15-inch, black-and-

Game Design with AGS

6

white television and four input buttons. You dropped in a quarter, and then you
had 90 seconds of riveting gameplay where you controlled your spaceship around
the screen and tried to shoot as many UFOs as you could, gaining a point for each
UFO you hit. After the 90 seconds was up, if you had a a bigger score than the
UFOs did, the game would give you an additional 90 seconds and then you would
start again. Fun! Just make sure you didn’t hit more than 9 UFOs, because if you
did your score would reset back to 0 (counting to 10 was HARD). Gameplay
would continue like this forever, or until you got tired and had to go back to
hunting and gathering.

Games got a bit more exciting in 1972 with the release of everyone’s favorite
computer tennis game, Pong. This game was based on the Magnavox Odyssey
console, which, unlike Computer Space before it, was a console game that people
could buy and play at home on their own TVs. Pong connected to a television
and had two paddles for input. The graphics were made up of a line drawn
vertically down the center of the screen, two smaller vertical lines on the left and
right sides of the screen, and a dot which represented a ball (graphics artists had it
easy back then). There were two sets of numbers at the top of the screen for the
players’ scores. The “ball” moved around and the players would bat it back and
forth and hope the other player missed it, in which case a point would be
awarded. Simple? Yes. Popular? Very!

This was basically the only choice of computer games at the time. These games
were considered “fun” at the time, although there wasn’t much interaction to
them. There were no characters to speak of, little or no story, and certainly no
real challenge aside from being able to press some buttons. But things were about
to change.

The First Adventure Game
Will Crowther, it could be argued, was the father of the Adventure Game. In
1975, while working as a computer programmer for Bolt Beranek and Newman,
he decided he would write a computer game for his two daughters. Crowther
called his game Collosal Cave, and it was based on his adventures exploring
Mammoth Cave in Kentucky. The game, by today’s standards, was very

Getting to know (and love) AGS

7

primitive and simple, consisting only of a textual interface and input system,
where the player would type commands into the computer and read the result on
the screen. Since he designed Collosal Cave for his young daughters, and also
wanted it to appeal to the general population (not just computer geeks), he
programmed it to understand the commands entered by the user in a “natural
language” kind of way. The player could instruct the game to do things by using
1- or 2-word commands. For example, if a player wanted to go north to the next
section of the cave, she could simply type “go north” and the program would
understand and process the request (alternatively, she could type “walk north” or
“go up”). A player who wanted to look at the wall could type “examine wall.”

The game was passed from person to person throughout the fledgling Internet
(which at that time consisted of only a handful of computers—nothing like the
gargantuan network we know and love today), until it became fairly ubiquitous
among computer geeks. After all, people were hungry for a little computer
entertainment, since programs then usually consisted of cryptic user interfaces
that were difficult to understand (NLS, anyone?) and computer games were
practically unheard of.

The next year, in 1976, a guy by the name of Don Woods found the game on one
of the computers at Stanford Unversity and, after corresponding with Crowther,
greatly expanded the game. Later that same year, it was ported from FORTRAN
to C and and distributed by DECUS (Digital Equipment Corporation User Group)
as Colossal Cave Adventure, or simply, Adventure.

Voila! The Adventure Game was born!

A couple of years after Adventure, four programmers at MIT took this idea of an
“interactive fiction” adventure game and developed a game similar in design
called Dungeon. At least, that was what they had planned on calling it. The
game ended up being called Zork, a name which was used at the time to refer
generically to an unfinished program. The name kinda stuck, and in 1979 they
founded a company called Infocom and published the game as Zork I: The Great
Underground Empire in 1980. Infocom later went on to publish many more text
adventure games throughout the 1980s, including no less than 10 additional
games in the Zork series.

Text adventures were all well and good, but eventually computer processors got
faster and computer video got more advanced. Text adventures advanced a bit in
the early 80s to the point where the player was presented with a static
“background” image, and some text that accompanied the image. In 1980, the
newly-founded On-Line Systems (later to become Sierra On-Line) released just
such a game called Mystery House, and later that same year they produced the
first color adventure game, Wizard and the Princess. These games were still

Game Design with AGS

8

basically text adventure games, however. Even though there were graphics, the
graphics didn’t animate, and the player had no real interaction with the graphical
environment. It was more of a supplement to the text, not the other way around.

This changed in 1984 when Sierra On-Line released the very first truly graphical
adventure game: King’s Quest: Quest for the Crown. For the first time, a player
could control the character on the screen in a (pseudo) 3D environment (at least, it
was marketed that way, as a “3D Animated Adventure”). In King’s Quest, the
player takes the role of Sir Graham, who is sent by the King of Daventry to
recover the kingdom’s three most precious magical items: the Magic Mirror that
forsees the future, the Magic Shield of invincibility, and the Magic Chest that is
always filled with gold. Along the way, Graham meets with several characters
from fairy tales (Rumplestiltskin, a dragon, and the witch from Hansel and Gretel,
to name a few) and in the end, Sir Graham inherits the crown to become King
Graham, and ends up being the protagonist in two of the seven subsequent King’s
Quest adventures. King’s Quest was not an instant success; however, it did well
enough that Sierra released a sequel just a year later and the graphical adventure
game genre took off. They subsequently created classics like Police Quest, Space
Quest, Quest for Glory, and Leisure Suit Larry, among others.

These text-based adventure games soon evolved into mouse-controlled games,
where, for example, the player didn’t have to type commands like “open the
door” but could instead use the mouse to click on the door to open it. Sierra
created games like this, as did Lucasfilm, George Lucas’ movie production
company. Lucasfilm teamed up with Atari to produce games under the Lucasfilm
Games label, which eventually became LucasArts. They created very successful,
well-known adventure games like Maniac Mansion, The Secret of Monkey Island,
and Indiana Jones and the Fate of Atlantis, which all used this more updated
mouse-based interface.

About This Book

Getting to know (and love) AGS

9

This book aims to teach you how to write an adventure game using AGS, from
stem to stern, using a game that we designed and wrote specifically for the
purpose of this book. The game you’ll be writing in this book is called “Foxy’s
Quest” and through it, we try to walk you through each aspect of a typical
adventure game, using hands-on examples and screenshots along the way so you
won't get lost. The book is designed as a self-paced tutorial, which you should
read sequentially, starting at Chapter 1 and working your way all the way through.
After you’ve read the whole book and you’ve done all the examples we present to
you, you’ll be well-prepared to tackle your own adventure game!

Much of the process of making an AGS game involves dealing with the graphical
user interface of the AGS Editor, with all of its menus, buttons, and panels.
However, a significant portion of the process involves writing script code to tell
AGS how to handle situations and events that come up in your game. For this
reason, we’ll teach you how to write code using AGS’s scripting language. If
you’ve never done any programming before, don’t worry. We don’t assume that
you have any programming experience. However, if you do have some
experience, especially with C, C++, or C#, then learning the AGS scripting syntax
will be a piece of cake.

With a little determination and motivation, you will be on your way to your own
adventure game in just a short time. So sit back, grab a computer, and follow
along with us on your AGS journey!

Book Conventions
We will be using certain syntax and conventions throughout this book to make it
easier to read.
• Anything that relates to AGS script (source code and function names) will be

printed in a fixed-width typeface similar to this:
 // Say hello to everyone.
 Display(“Hello to everyone”);

• Anything that you should click on in the AGS editor will be in bold and will
look like the following:

 Click the Change... button to change the background...

• Any folder names or file names will be italicized as in the following two

examples::
 click Create sub-folder and call this folder FoxyMonk.
 There you will see a property called StartingRoom
 Or, ...find the file called simple_bg.bmp...

Game Design with AGS

10

• Every once in a while we'll have some rather useless information that's not
good enough for Jeopardy, but could be useful to some of you. We'll put this
information into a side note.

• And finally, for things that we're not sure what to do with, we'll italicize them.
Oh, and then we'll make them bold and underline them too. Oh, Oh, and we'll
put them in quotes and use fixed-width typeface! Kind of like:
If you've ever read the book that was later made into a movie that is also a

keyword in a programming language and a newspaper article, called
“Main” , you'd understand what we mean.

About The Game We're Going to Make
Some of you (ok all of you) will think that our game doesn't make sense. Well, it
all depends on what sense you want to make. Making sense is only important for
your nose. Otherwise it would be your hands or eyes. But whatever you decide,
it should make sense to you, and that it does.

System Requirements
The version of AGS that we will be using throughout this book is 3.2.1 which is
the latest version while we’re writing this, so everything here will work if you are
using that version of the editor. You may use the newest version available even if
it’s newer than our version, and we’ll promise not to hunt you down and pour hot
sauce in your eyes, but some of the features of your fancy new version might be
different from ours. So you’ve been warned. Beware. (We might decide to use
Heinz 57 instead.)

AGS Editor will run on Windows 2000, XP, Vista, or Windows 7 and requires the
.NET Framework 2.0 or later. If you don’t know what .NET Framework is, then
you most likely don’t need to worry about it, since you’re system probably has it
installed anyway (it comes preinstalled with Windows Vista and Windows 7).

The games that you create using AGS have a different set of requirements (which
makes sense when you think about it, since the game is a different program from
the editor that you used to create the game). AGS games will run on Windows of
course (.NET Framwork is not required for the games themselves), and they will
also run on other systems as well, like Linux and Mac OS X with a little
tweaking. We’ll get into that in more detail in Part 2 of the book, so hang tight.

Installing AGS
Installing the AGS Editor is a simple matter of downloading it from
http://www.adventuregamestudio.co.uk/. Click on the download link (see Figure

Side Note: This is what a side note would look like.

Getting to know (and love) AGS

11

0.1) and get the latest installer. Double-click the installer and follow the
instructions. If you have any problems then you might be missing the .NET
Framework. If you don't have the .NET Framework for some reason, then run a
Windows Update on your computer by going to http://update.microsoft.com.
There you should see an option to install .NET Framework. If you don't see it
there, then you probably have it or you're running Windows ME or something
ridiculous. (UPGRADE NOW!) You can also check your Add/Remove
Programs under Control Panel for .NET Framework. If you're running Windows
Vista or Windows 7, then you should already have the .NET Framework installed.

Figure 0.1: The AGS Website. The download link is circled in red.

Game Design with AGS

12

Creating Your First Game
After successfully installing the AGS Editor, you should be able to easily find it
in you Windows Start menu. Running the editor will show an AGS splash screen
and then the IDE appears as in Figure 0.2.

Figure 0.2: AGS IDE

You should see three options in the wizard that pops up. More than likely you
don’t already have any games to open (otherwise you wouldn’t need this book).
Choose the default option to start a new game and click the Continue button. The
Start New Game wizard will now guide you (Figure 0.3). After clicking Next,
you should see three templates to choose from (Figure 0.4).

Getting to know (and love) AGS

13

Figure 0.3: Start New Game wizard

Figure 0.4: Start New Game wizard

New games created with AGS are always based on templates. Templates are
basically skeletons for games. You choose your skeleton and build around it.

• Default Game is the easiest one to get started with. Choosing this
template will create a game that provides you with some default graphics,
such as an example character, as well as graphics for the default icons and
buttons. It will also include some actions like Save, Restart, and Quit .
This is the template we’ll be using in this book.

• Empty Game will create a game that contains no graphics, GUIs, sounds,
rooms, scripts, etc. It basically gives you nothing, in case you just want to
create a brand new game entirely from scratch. Since we want the
graphics and GUIs and extra goodies that are in the Default Game
template, and since the process of creating graphics isn’t the focus of this
book anyway, we won’t be using this template at all.

• Verb Coin allows you to create a game with a different interface than the
one in the default template. Verb coin can be interesting to work with, but
we will not be talking about it in this book.

Side Note: If you’d like to know more about verb coin you can create a game
with the Verb Coin template and try it out. The Verb Coin template attempts to
emulate the interface style used by some of the LucasArts games, like Full
Throttle and The Curse of Monkey Island, as opposed to the default icon-based
interface that AGS uses, which is based on the Sierra On-Line adventures like
King’s Quest V, Police Quest 3, and Freddy Pharkas, Frontier Pharmacist, to
name a few.

Game Design with AGS

14

Choose the Default Game template and click Next. Something like Figure 0.5
should appear. Here you should give your game a name. You can change this
later though if you don’t like it. You’ll also need to give it a file name to use and
a folder to put your game in. Typically, your file name and the name of your
game will be the same. We’re calling our game “My First Game” for now.

Figure 0.5: New game information

And now for the final click. Yes, click Finish. Congratulations, you’ve created
your first AGS game. It doesn’t do much right now, but believe it or not, your
first game is actually playable right now!

Running Your Game

Side Note: It’s important to note that AGS doesn’t limit you to creating games
that only use the default interface or the Verb Coin interface, despite the fact that
these are the only template you can choose from. Part of what makes AGS so
compelling is the fact that you can customize almost every aspect of the game,
including the interface, graphics, and sound. So, if you want a game that has a
particular interface that’s not in the templates, just go ahead and create your game
using the Default template, and then you can tweak it and change it however you
want. Just about every type of adventure game interface has been done with
AGS, from the LucasArts SCUMM interface used in The Secret of Monkey Island
and Maniac Mansion, to the text-based interface used in the early Sierra
adventures; from the interface in Myst to the type of interface in games from the
Adventure Company. It can all be done with AGS, but you might have to
customize things a little using the know-how you gain from this book.

Getting to know (and love) AGS

15

Let’s see what this game can do. You should see a window similar to the one in
Figure 0.6. We’ll discuss the editor interface in a moment, but for now let’s run
this game we just created. Click on the circle with the green arrow in it. It looks
like Figure 0.7.

Figure 0.6: The editor

Figure 0.7: The Run button

You’ll see some dialog boxes pop up and then, Voila! You have your first
Adventure Game running. The game doesn’t do much yet, but as you’ll see, there
is already a lot of functionality built in for you. You will see the main character
wearing a white suit and the mouse cursor will look like a walking man (Figure
0.8). This walking man cursor is used to make the main character walk around
the screen. Try clicking around the screen now and the character will walk to
wherever you clicked. Move your mouse cursor to the top of the screen and an
in-game menu will pop up (Figure 0.9).

Game Design with AGS

16

Figure 0.8: Your first game

Side Note: You might be wondering why the game is running inside a tiny little
window instead of full screen. This is because we ran the game in Debug Mode
(by clicking the green button in Figure 0.7) which will always run in a window.
Debug Mode is the mode you'll be running in while you are designing your game,
and the thought is, while you're creating your game you don't need to see it in full
screen all the time. Your users, though, will be able to run the game in all its full
screen glory when you distribute it. There are times when you might want to run
your game in full screen mode even while you're designing it, and you can do this
at any time by clicking the Build menu, then clicking Run without debugger (or
by pressing Ctrl+F5).

Getting to know (and love) AGS

17

Figure 0.9: In game menu

The first four icons on the left are used to change what action is to be done on an
object or character. From left to right, the actions are walk, look, touch or
interact, and talk . Clicking one of these icons will change the mouse cursor to
match the action. Try each one of these actions on the main character and you
can see how they work. Click the eyeball icon, for example, and your mouse
cursor will change into an eyeball. Then if you click the eyeball on the main
character you will see a message that says, “Damn, I’m looking good!” Each of
the other two icons will display messages as well. As an alternative to using this
menu bar to switch between actions, you can also use the right mouse button
while playing to cycle through all the mouse actions that are available.

Continuing from left to right, the next icon is a suitcase. Clicking this icon will
bring up a screen that shows the player’s inventory of items. We haven’t given
the character any items yet, so his inventory is empty at the moment, so if you
opened the inventory, just click the OK button to close it. The next icon in the
menu bar is a black box. This is there to show the most recently selected
inventory item. If no item is selected, or you have nothing, then it will remain a
black box. The next two icons are the save and restore features of the game.
These actually work and you can try saving and restoring the game if you like
(you know, in case you made a lot of progress through your black screen and want
to save). If you click save, you can enter a file name and save the game. You can
also delete previously saved games. Clicking restore will show a menu of
previous games that you can choose to load. The next icon is self explanatory:
Exit (I wonder what that does). And finally, the last item brings up an in-game
control panel. I know it looks like a question mark, but no, it’s not HELP. As

Game Design with AGS

18

you can see in Figure 0.10, you can save and load games, restart, quit and change
other options from that question mark.

Figure 0.10: In game control panel

Well ok then. That’s how you make a game and run it. Thanks for buying our
book. Please be sure to check out our other wonderful products. For the rest of
the book, we will recite all the words to “3,890 Bottles of Beer on the Wall.”

Getting to know (and love) AGS

19

Long Beer Song
 3,890 bottles of beer on the wallllll, 3,890 bottles of beeeeer.
 You take one down. Pass it around. 3,889 bottles of beer on the wall.
 3,889 bottles of beer on the wallllll, 3,889 bottles of beeeeer.
 You take one down. Pass it around. 3,888 bottles of beer on the wall.
 3,888 bottles of beer on the wallllll, 3,888 bottles of beeeeer.
 You take one down. Pass it around. 3,887 bottles of beer on the wall.
 3,887 bottles of beer on the wallllll, 3,887 bottles of beeeeer.
 You take one down. Pass it around. 3,886 bottles of beer on the wall.
 3,886 bottles of beer on the wallllll, 3,886 bottles of beeeeer.
 You take one down. Pass it around. 3,885 bottles of beer on the wall.
 3,885 bottles of beer on the wallllll, 3,885 bottles of beeeeer.
 You take one down. Pass it around. 3,884 bottles of beer on the wall.
 3,884 bottles of beer on the wallllll, 3,884 bottles of beeeeer.
 You take one down. Pass it around. 3,883 bottles of beer on the wall.
 3,883 bottles of beer on the wallllll, 3,883 bottles of beeeeer.
 You take one down. Pass it around. 3,882 bottles of beer on the wall.
 3,882 bottles of beer on the wallllll, 3,882 bottles of beeeeer.
 You take one down. Pass it around. 3,881 bottles of beer on the wall.
 3,881 bottles of beer on the wallllll, 3,881 bottles of beeeeer.
 You take one down. Pass it around. 3,880 bottles of beer on the wall.
 3,880 bottles of beer on the wallllll, 3,880 bottles of beeeeer.
 You take one down. Pass it around. 3,879 bottles of beer on the wall.
 3,879 bottles of beer on the wallllll, 3,879 bottles of beeeeer.
 You take one down. Pass it around. 3,878 bottles of beer on the wall.
 3,878 bottles of beer on the wallllll, 3,878 bottles of beeeeer.
 You take one down. Pass it around. 3,877 bottles of beer on the wall.
 3,877 bottles of beer on the wallllll, 3,877 bottles of beeeeer.
 You take one down. Pass it around. 3,876 bottles of beer on the wall.
 3,876 bottles of beer on the wallllll, 3,876 bottles of beeeeer.
 You take one down. Pass it around. 3,875 bottles of beer on the wall.
 3,875 bottles of beer on the wallllll, 3,875 bottles of beeeeer.
 You take one down. Pass it around. 3,874 bottles of beer on the wall.
 3,874 bottles of beer on the wallllll, 3,874 bottles of beeeeer.
 You take one down. Pass it around. 3,873 bottles of beer on the wall.
 3,873 bottles of beer on the wallllll, 3,873 bottles of beeeeer.
 You take one down. Pass it around. 3,872 bottles of beer on the wall.
 3,872 bottles of beer on the wallllll, 3,872 bottles of beeeeer.
 You take one down. Pass it around. 3,871 bottles of beer on the wall.
 3,871 bottles of beer on the wallllll, 3,871 bottles of beeeeer.
 You take one down. Pass it around. 3,870 bottles of beer on the wall.
 3,870 bottles of beer on the wallllll, 3,870 bottles of beeeeer.
 You take one down. Pass it around. 3,869 bottles of beer on the wall.

Game Design with AGS

20

 You didn’t think we were serious, did you?

Getting to know (and love) AGS

21

Summary
Let's review the important points we discussed in this chapter:

• Adventure Game History We discussed a little about what adventure
games are and where they came from.

• AGS is cool 'Nuff said.
• First Game We created our first game with AGS. Although it doesn't

do much yet, you'll be adding to it throughout the rest of the book. We
created the game using the Default template, which gives us basic
functionality, like a main character, a simple room to walk around in, a
mouse cursor with several different action modes, save/restore
functionality, and a basic GUI syste

Chapter 1

The AGS Editor

The Editor

Just in case you missed the last screenshot of the editor, here it is again. (I know I
hate it when I have to flip back in a book!).

Figure 1.1: The editor

The editor consists of three main parts. The big part in the middle, the Document
Pane, is where you do all of your, um…, editing. The section on the top-right
shows a tree that looks much like Figure 1.2. This tree, called the Project Tree,
allows you to open different editing panes. Go ahead and get familiar with it by
double-clicking the options. You’ll be using it a lot.

Game Design with AGS

24

Figure 1.2: The Project Tree

The bottom-right pane will show different things depending on what you’re
working on. It is called the Properties Pane, and allows you to change detailed
attributes of whatever object you are currently editing. Sounds like fun? Well it
is! Figure 1.3 shows an example of what the Properties Pane looks like when
editing a character. If you’d like to see it for yourself, expand the Characters
item in the Project Tree and double-click cEgo. In fact, double-click everything
and look at the properties that come up. More about this later.

Figure 1.3: The Properties Pane

The AGS Editor

25

Let’s talk a bit about the different types of editing panes that you can use within
AGS. We won’t go into too much detail here, but just enough so you get familiar
with what AGS can allow you to do within your game.

General Settings
In the Project Tree, scroll all the way to the top and double-click on the item
labeled General Settings. This opens the General Settings editor in the
Document Pane, which allows you to specify some of the basic settings for your
game like the resolution at which your game will run, the name of your game, the
maximum score the player can achieve, as well as letting you put information
about who created the game. There are lots of options here and we’ll delve into
most of the options in Chapter 6.

Colors
The Colors editor lets you define colors within your game. For the most part, you
won’t be using this editor too much if you selected a 16-bit or 32-bit color palette
in the General Settings, but it can be useful for using colors within the AGS
scripting engine. (If that last sentence didn’t make any sense to you, don’t worry
about it for now; more will become clear later when we talk about colors in more
detail in Chapter xyz.)

Sprites
Sprites are simply images within the game. The character you saw in the default
game, for example, is a sprite. In fact, since the main character animates, it is
actually composed of several sprites that play much like the frames of animation
in a cartoon. The Sprites editor is where you go to manage all of the sprites in
your game. Double-click on Sprites in the Project Tree, and you’ll see several
sprites appear in the Document Pane. This isn’t all of the sprites, however.
Notice that a new tree appears in the Document Pane, with the word Main at the
top. Expand this tree and click on the Defaults folder. This is where you’ll see
the sprites that make up the character, as well as the sprites for all of the icons in
the menu bar that we mentioned earlier. The Sprites editor lets you import new
sprites into your game and organize them into folders. We’ll be using sprites
throughout the entire book, so you’ll get very familiar with the Sprite editor.

Text Parser
Do you remember the old games from Sierra like Police Quest and King’s Quest
where you had to type commands that you wanted the character to do and the
computer would respond with ambiguous answers like, “You’re not close
enough?” Well, if you want to recreate games like those then the Text Parser is
your friend. Since the game we’re creating in this book is not a text-style game,
we will only briefly mention it in chapter xyz.

Game Design with AGS

26

Lip Sync
AGS syncs with the lips and the lip syncing is the thing for AGS without lips. If
your adventure game shows a close-up portrait of the characters’ faces when they
are speaking, then you can use the Lip Sync editor to try to closely match the text
that the characters are saying to their mouth movements. Although this is a fairly
rudimentary feature, it does the job quite nicely and it can really make a character
look like he is speaking.

GUIs
A GUI is a Graphical User Interface. GUIs allow a user to interact with the game
in some way. It can allow you, as the game creator, to get information from the
player of your game by asking questions (Figure 1.4), getting input from the
keyboard (Figure 1.5), or allowing the player to change game settings (Figure
1.6). AGS lets you make GUIs for all these purposes and more. You can even
make GUIs to interact with characters. You’ll have to wait until you get to
Chapter xyz for more on this. (NOT KIDDING. NO PEEKING AHEAD!)

Figure 1.4: Question GUI

Figure 1.5: Input GUI

The AGS Editor

27

Figure 1.6: Settings GUI

Inventory Items
Inventory items are used extensively in most adventure games. Usually the main
character collects items during the game to use at specific points in the game.
This is the editor to use to create all these items. Go ahead a look at the default
items that are in there now. You’ll soon get very familiar with this editor.

Dialogs
The Dialogs editor allows you to create interactive conversations that can take
place between characters. You can develop question and answer interactions
between characters and have the game proceed differently depending on the
answers the player chooses. This is actually a lot of fun. We’ll see more of this
in Chapter xyz.

Views
A view is simply a collection of animations. Any animation that you use in your
game will be represented by a view. For example, the animation that you see
when your main character is walking comes from a view, as does the animation
that you see if a cup falls off of a table and smashes on the ground. Go ahead and
double-click on VIEW1 and take a look at the editing pane. This is the default
view for the main character’s walking animation. Since animations are an
integral part of an adventure game, making views is going to be one of the most
important parts of creating your game. We’ll delve extensively into views in
Chapter 2.

Game Design with AGS

28

Characters
The Characters editor is where you create the characters that are in the game. Not
only is the main character created here, but any character that the main character
interacts with would be here as well. The Character editor allows you to specify
attributes of each character; including which room the character starts in, which
views are used to represent the character, the speed at which the character walks
around on the screen, and other such things.

Mouse Cursors
AGS allows you to make many differently shaped mouse cursors to use
throughout the game. If you look at the first four cursors in the Project Tree, you
will notice that they are the ones that appear in the sample game you created
earlier. The mouse cursors you create here can be a single image, or they can be
associated with a view, which allows your mouse cursors to animate. You’ll learn
more about cursors in Chapter xyz.

Fonts
AGS lets you use different fonts to represent text in your game. However, you
cannot use a font without first importing it into the Fonts editor. The Fonts editor
supports true type fonts (TTF) as well as SCI (Sierra Creative Interpreter) fonts,
which are fonts used in the old Sierra games like King’s Quest and Space Quest.
More about this when we talk about GUIs later.

Global variables
Global variables are associated with scripting (If you don't know what a script is,
look at the next section real quick and come back here). Variables are objects that
you use in scripts that hold values. Normal (non-global) variables can only be
used within a specific script file or room. A global variable, however, can be used
in any script. This editor is a place to define your global variables for use within
your game. If this is all foreign to you, don’t worry about it now. You'll pick all
this up as we go along.

Scripts
Scripts are, more or less, instructions that you give AGS to tell it to do specific
tasks. It’s basically the nuts and bolts of your game. There are certain things you
will want to do within your game that you just can’t do with any of the other
editors in AGS, and scripting allows you to do those things. You will quickly
find out that scripting is a very important part of creating adventure games. Go
ahead and double-click a few scripts and get a feel for what they look like, but
know that we will be including scripting all throughout this book and you’ll get
familiar with it soon enough, so don’t let it scare you right now.

The AGS Editor

29

Plugins
Plugins are extensions to AGS that give it extra functionality. They can be
written by anyone and distributed to be used in making games. Plugins are not
necessary to create a game and are beyond the scope of this book.

Rooms
Rooms are very, very important. Think of it this way: There would be NO game
if there was not at least one room and one character. A room is where the action
takes place in your game. Don’t let the word “room” confuse you—a room is
anywhere action takes place in your game, regardless of whether it’s a typical
room with four walls, a floor, and a ceiling. A forest, for example, can be a room,
and a meadow could also be a room. A room in AGS will contain the background
graphic, any objects that are in the room, the room script, and other room goodies
like regions, hotspots, walkable areas, edges, and walk-behinds. There is one
room already created in the default game. Open the Rooms item in the Project
Tree, then expand the item labeled “1:.” This is the default room. Double-click
Edit room to see the graphics (just a black background here). Double-click
Room script to see the script file. There’s not much to see here now, but this will
grow as we add things to our room later on.

Translations
Je ne sais pas ce que c'est. Was? Verstehest du nicht? That’s why you need
translations. If you’re going to make your game to be played by people who
speak different languages, you’ll want to use the Translations editor. This allows
the text in your game to be translated into different languages. Chapter xyz will
tell you more about this.

Summary
This chapter focused on the AGS Editor, a very import piece of AGS:

• AGS Editor Components The AGS Editor is made up of three main
parts: the Document Pane, the Project Tree, and the Properties Window.
The Project Tree gives you access to all of the components in your game.

Chapter 2

Sprites, Views, and Characters

A quick revisit of what sprites, views, and characters are is in order here. Sprites
are simply images within the game. Because a character animates, it usually takes
several sprites to make up a character. Views are, simply put, collections of
sprites that make up animations. So basically, characters are made up of views
which in turn are made up of sprites.

Sprites
The first step in creating a character is to draw some sprites. Our character is
going to be a fox in a monk outfit with angel wings. (hmm. SOMEONE was
drunk!) Find the file named foxy_monk.bmp to follow along. Figure 2.1 shows a
quick snapshot of the file. I know you can’t tell that it’s a fox. So what!? If you
want to create your own sprites, then go for it. We’ll wait…

Figure 2.1: Foxy Monk Sprites

As you can see, there are 12 sprites in this file. They each take up the same
amount of space to make importing them easier, but that is not necessary. Most
of the time, an artist will put many individual sprites into one image file to reduce
the number of files needed to create the game, making each sprite the same width
and height. That way, the sprites can be aligned in a tiled pattern, as in our
example above.

Once you have your sprites saved in a file, the next step will be importing them
into your game. Open the Sprites editor by double-clicking Sprites in the Project
Tree. You will see two panes open up in the editing area (Figure 2.2). On the left
is a list of folders that contain sprites. This is simply a way for you to organize

Side Note: You can find the graphics for the following examples on
http://www.ensadi.com/book/sprites.php

Game Design with AGS

32

the sprites within your editor. For example, you might want to have all of the
sprites associated with a character in a folder with the same name as that
character. Your final game could easily contain hundreds, if not thousands, of
sprites, and getting into this habit of organizing your sprites will make it easier to
find and manipulate sprites later.

Figure 2.2: Sprites Editor

Let’s create a folder to contain all of our sprites for Foxy Monk. First, right-click
on the Main folder on the left editing pane and click Create sub-folder and call
this folder FoxyMonk. The right editing pane will now be empty since there are
no sprites in this folder (duh!). Let’s fix that by adding a few sprites.

To start importing your sprites, right-click in the right editing pane and choose
Import new sprite from file… This will bring up the good ol’ Windows file
open dialog. Find your file and double-click it. You should then see the Import
Sprite window open as in Figure 2.3.

Sprites, Views, and Characters

33

Figure 2.3: Import Sprites Window

As you can see, AGS loaded your file and is ready to import the sprites. Let’s tell
it how we want the file divided up. Use the zoom slider to make the picture
bigger so you can see it easier. Hold the mouse at the top-left corner of the
picture. Click and hold the right mouse button. (notice right NOT left and it's
bold!). Drag the mouse down and to the right until the first image is highlighted
as in Figure 2.4. Note that in this case, the mouse location needs to end up at
position (24,32) because that’s the size of each of our sprites (you can see your
mouse location by looking at the upper left section of the Import Sprite window).
Release the mouse button and the highlight rectangle will remain at that size.
This tells AGS how big your sprite is. Notice now that as you move your mouse
around on the sprite, the highlight rectangle follows your movements. Move the
mouse pointer to the upper left-hand corner and the highlight will cover the first
sprite. Click the left mouse button and your first sprite is imported! Feels good on
the inside, doesn’t it? Well good. Now all we have to do is repeat the above steps
11 more times to import the rest of the sprites for Foxy Monk. (sigh) If only
there was a better way…

Well there is! But first let’s delete the sprite you just imported (it will be easier
this way, trust me). Click on the newly imported sprite and hit the delete key and
click Yes when asked to confirm.

Game Design with AGS

34

Figure 2.4: Highlighting a Sprite to Import

Let’s start the process again, and this time we’ll use the fact that the sprites are
tiled to our advantage. Right-click the middle pane and choose New sprite using
last sprite…. This option will open up the last file so you don’t have to hunt for
it again. Zoom in if you like, but make sure that the entire image stays visible
(this will be important in just a second). Hover your mouse over the picture.
Notice that AGS remembered the size of the highlight from your last import.
Click the Tiled sprite import checkbox above the zoom slider. Tiled sprite
import allows you to select all the sprites that you want to import at once, as long
as they are all the same size. Move the mouse pointer to the top-left corner of the
image and left click. You should see a blue outline around the first sprite. As
you move the mouse, AGS will draw a grid around the sprites in your image.
Move the mouse down to the lower-right corner and you should see the blue
outline encapsulate each sprite perfectly as in Figure 2.5. Click the mouse again
and all your sprites should now be imported! Yay!

Sprites, Views, and Characters

35

Figure 2.5: Tiled Import

One other thing to note. Did you notice that our sprites have a green background?
This green area won’t be drawn when the game is played, thanks to something
called transparency. The Import Sprite dialog has a drop-down box called
Transparent colour. This allows you to tell AGS what the transparent color is in
your sprite. Any pixel that is the same color as the transparent color will be
invisible when you play your game. If this wasn’t set correctly in our sprite, Foxy
Monk would always have a green rectangle behind her (Figure 2.6).

Figure 2.6: On the left, the Foxy Monk sprite

has proper transparency. On the right, transparency is not
correct and you can see a green box around the sprite.

Views
Now that we have the sprites imported for our character, we need to create a View
for the character. We told you earlier that a view is a collection of sprites that

Game Design with AGS

36

make up an animation. We lied (sorry!). A view is actually a collection of loops,
and a loop is a collection of sprites. Put another way, a loop is an animation, and
a view is a collection of animations. To understand this, let’s use our Foxy Monk
as an example. In our image, we had 12 sprites. The first 3 images show Foxy
Monk walking away from us, the second 3 show her walking to the right, the next
3 show her walking towards us, and the last 3 show her walking to the left. Each
of these directions (up, down, left, and right) is a separate animation (loop), and
they will all be contained in a single view that represents Foxy Monk walking
(Figure 2.7).

Figure 2.7: Foxy's View

In AGS, the 4 loops that are associated with Foxy Monk walking will all reside in
the same View. So later, when we assign this view to Foxy Monk, AGS will
automatically know to use loop 0 when she's walking down, loop 1 when she's
walking to the left, loop 2 when she's walking to the right, and (you guessed it)
loop 3 when she's walking up. In case you're wondering how AGS knows that
those loop numbers go with those directions, it's something that's built into AGS.
The first 8 loops have special purposes in AGS. Loop 0 is always the loop for
down, loop 1 is always the loop for left, etc. The list of loops and the associated
directions is listed in Figure 2.8. The first four loops (loops 0 – 3) are required; if
your view does not contain at least four loops, AGS will create them for you
automatically. However, the rest of the loops are optional; that is, you don't have
to create loop 4 if you don't want to have a separate animation for your character
walking down and to the right. In this case, AGS will make an educated guess as
to which of the four “cardinal” directions to apply to your character when he is
walking in a direction that is not explicitly up, down, left, or right. None of the
loops after loop 7 have any special meaning in AGS.

Sprites, Views, and Characters

37

Loop Direction

0 Down

1 Left

2 Right

3 Up

4 Down-right (diagonal)

5 Up-right (diagonal)

6 Down-left (diagonal)

7 Up-left (diagonal)
Figure 2.8: Loops and their directions

Let's create the view shown in Figure 2.7. Expand Views under the Project Tree.
If you created the default game and have been following along, you will already
have two views listed there (VIEW1 and VIEW2). We could change one of those
views to suit our needs, but for purposes of demonstration let's go ahead and make
a new one. Right-click on Views in the Project Tree, select New View from the
popup menu, and name the view vFMNormal . Whoa! That's a weird name.
What the heck does vFMNormal mean, anyway? Well, as a general rule, you
can name things in AGS whatever you want, but if you follow some simple
nomenclature it will make your life much easier when your game gets larger. In
this case, our view name begins with a lowercase “v.” This stands for “view” and
is there just so that we immediately know just from looking at the name that
vFMNormal is a view. The “FM ” part of the name stands for Foxy Monk, and
“Normal” means that this is Foxy Monk's normal view. (We'll talk about what a
normal view is in the next section.)

Side Note: You might be wondering why we're making such a big deal about how
things are named within AGS. After all, why name a view starting with a
lowercase “v” when it's obvious that the view is a view, since it's in the Views
section of the Project Tree? This is a good question, and if we always dealt with
our views and other things solely from the Project Tree then we might not need to
be picky about the names. But, as you'll find out later, we will be using many of
the names we create when we talk about scripting, and we won't want to have to
refer back to the Project Tree to remember what we named our stuff. If we're
always consistent with the way we name things, then a name like vFMNormal
will actually be much easier to remember than if we'd named the view Banana or
something arbitrary!

Game Design with AGS

38

Ok, we've created a view, now what? If you've been paying attention you should
be able to answer this question yourself. We need to create our four loops! Open
vFMNormal view if it isn't already and notice that there are no loops created yet
(Figure 2.9).

Figure 2.9: Our new view with no loops or sprites

Figure 2.10: Our new view with one loop. It doesn't have any sprites assigned to it yet.

Let's fix that now. Click the Create new loop button and Loop 0 will be created
as in Figure 2.10. There are three buttons here: Create New Frame, Create new
loop, and Delete last loop. These should be self-explanatory, but just in case,
we'll discuss each of them. Click the Create new loop button. A second loop
will appear called (Loop 1). Now click Delete last loop to delete it. This is how
you would create and delete loops from within the view editor. Go ahead and
click Create new loop three times to get our four main loops. Now we'll assign
sprites to Loop 0. Click the Create New Frame button under Loop 0, and you'll
see a blue cup sprite appear (Figure 2.11). The blue cup is the default sprite that
AGS uses when it knows a sprite should be there but you haven't told it which
sprite to use yet. Double-click the blue cup and AGS will bring up a dialog box to

Sprites, Views, and Characters

39

let you choose a sprite to use. Click the FoxyMonk folder on the left, and choose
the first of the three sprites that shows Foxy Monk walking down. Click Use this
sprite (Figure 2.12). The blue cup has been replaced by Foxy Monk. Rock on!
Since we have three sprites for Foxy Monk walking down, this loop will need to
have three frames. Click Create New Frame and watch closely at what happens.
Now, instead of a blue cup appearing, AGS is smart and it automatically selected
the next sprite in the animation. Click Create New Frame again and it will get
the third frame. How does AGS know which sprite to use when you create a new
frame? Well, it doesn't really. AGS just selected the next sprite in our list of
sprites. Since we imported all the Foxy Monk sprites at the same time, the next
sprite in our list was the next sprite in the animation. This is common enough that
AGS automatically selects the next sprite for you. This is also why it's always a
good idea for your sprite file to have the images in the right order and not strewn
about every which way.

Figure 2.11: The default Blue Cup appears when AGS doesn't know which sprite to use

Game Design with AGS

40

Figure 2.12: Choose the first down facing sprite

Now that we have three frames of animation for loop 0, it would be nice to see
what the animation looks like. The view editor provides a nice way for you to
preview the animation without having to run the game. To see the loop animated,
click the Show Preview checkbox above Loop 0, and then click Animate from
amongst the new checkboxes that appeared. Aww, look. Foxy Monk is walking,
ain't she just precious? Wittle Foxy-woxy Monky-wunky is just da cutest wittle
thing! Errr.. ahem...

Figure 2.13: The Show Preview and Animate checkboxes

Sprites, Views, and Characters

41

What we just walked through was one way to create a loop and assign it to a view.
Let's look at another (easier) way to do the other three. This time, choose Sprites
from the Project Tree to bring up the Sprite editor. Click the FoxyMonk folder so
we can see Foxy Monk's sprites. Let's select all the sprites that will make up
Loop 1 (left). Find the three frames that show Foxy Monk walking to the left.
Click the first of those three sprites, hold down the shift key, and click the last
one. This will highlight all three sprites of her walking to the left. Now right-
click on any of those three sprites and click Assign to View. You will see the
Assign Sprites to View window, as shown in Figure 2.14. Under View, choose
the view to which you want to assign this animation (view number 3 in our case).
(Alternatively, you can click the Choose button and select the view that way, but
if you know the view number you can just type it in.) For Loop, choose Loop 1
(left). The next question it asks is, “How would you like to assign the new
frames?” Select Overwrite existing loop, since our loop is empty anyway. Leave
the default options for everything else and click OK . A dialog box will appear
that says “The selected sprites were assigned successfully.” Click OK . Now, go
back to your view, and you'll see Loop 1 populated with Foxy Monk walking left!

Repeat the above steps to create Loops 2 and 3 for Foxy Monk walking right and
up, respectively. You view should end up looking like Figure 2.15 when you
finish.

Figure 2.14: Assign to View dialog

Game Design with AGS

42

Figure 2.15: Foxy Monk's Normal View

Characters

Now that we have a view for Foxy Monk, we should be able to easily create a
character of her. Start by right-clicking on Characters in the Project Tree and
selecting New character. This will create a new item in the tree called “1:
cChar1 .” Ick! What a horrible name. Let’s give our character a proper name.
Click on cChar1 in the tree to select it. Remember when we talked about the

Sprites, Views, and Characters

43

Properties Pane? We’ll get to use it now to set up our new character. Look at the
Properties Pane and find the section called Design . In this section you should
find two important properties: RealName and ScriptName . RealName is the
actual name you want to give to your character. As you can see, the real name of
the character right now is “New character.” Double-click on RealName and
Type in Foxy Monk , and then hit Enter. Now isn’t that better? Let’s turn our
attention to the ScriptName field now. The script name is the name that you
will be using to refer to your character when writing scripts. In other words, this
is the name that AGS will use to refer to the character. AGS assigned the name
cChar1 to it by default. The lowercase c in this case stands for “character” and
is there to let you know that this is a script name for a character when you’re
scripting later. (Remember we did something similar with a view in the previous
section.) Double-click on ScriptName and type in cFoxyMonk and then hit
Enter. Please note that this name shouldn’t have spaces. And that’s all there is to
naming a character.

Now that your character has a name, we need to give it a face. Well, a view
actually. Find the section in the Properties Pane named Appearance . Under
this section you should find 5 types of views: BlinkingView , IdleView ,
NormalView , SpeechView , and ThinkingView . The names of these views
should give you a hint as to what they’re for.
• The blinking view is the animation that is displayed when the character blinks.
• The idle view is the animation for the character when it’s just standing there

doing nothing. This view is activated after a certain amount of time passes
without doing anything (we’ll talk about this later).

• The normal view is, well, the normal view. This is the view that the character
will have when he’s standing or walking, and is the most used view. We
created this view earlier in this chapter.

• The speech view is the animation used when the character is talking.
• The thinking view can be used to make the character look like he’s thinking

about something.
AGS automatically uses the right view when the character is doing each of these
actions, so you don’t have to think about it. For example, if you have a view
assigned for the speech view, then AGS will automatically switch the character’s
view to the speech view when he is talking, and switches back to the normal view
when he’s done.

What is most important for us is the normal view. We want Foxy Monk to look
like the view we just created when she’s standing and walking. AGS assigned

Side Note: For you programmers, the script name is the variable name.

Game Design with AGS

44

View 1 to Foxy Monk by default but that’s not the one we want. Double-click
NormalView in the Properties Pane and type in 3, and then hit Enter (view 3
was the view we created in the last section, remember?). Now if you look at the
Editing Pane you should see Foxy Monk appear as in Figure 2.16.

Figure 2.16: Foxy Monk's Character

Let’s play around in the Editing Pane and watch Foxy Monk in action. Start by
clicking the Animate checkbox. You should see Foxy Monk start walking. Neat
huh? Click the up or down arrow under Loop and you should see Foxy Monk
change directions. There should be 4 loops that you can cycle through. Also,
note that the Frame box continuously changes as Foxy Monk walks. Let me
know when you’re done playing with that…

Ok, so we have a character and she walks. I’d say it’s about time to see this
character in action. Go ahead and run the game now. Seriously! Don’t read
anymore until you run the game.

Oh no! Where’s Foxy Monk? Don’t panic. Now, I know we haven’t talked about
rooms yet, but in order to see Foxy appear in the game, we have to move her to
the first room in the game; the room that the default white-suit character is
currently occupying. By the way, his name is Roger, if you haven’t already
figured that out. Go back to the Properties Pane and find the Design section.
There you will see a property called StartingRoom . Change this property to 1

Sprites, Views, and Characters

45

and run the game again. Voila! Foxy is here! And so is the default guy, errr, I
mean Roger. Now click somewhere to move her around. Oh, wait wait wait.
She’s not moving. Roger is. Back to the drawing board!

Let’s talk about a little more terminology. Right now, since Roger is the main
character (that is, the character the player is controlling), he is referred to as a PC
(or a player character). (I know, he looks nothing like John Hodgman but believe
me, he’s still a PC.) Player characters are any characters that the player controls.
This is opposed to NPCs, or non-player characters, which are characters that are
entirely computer-controlled. At the moment Foxy is an NPC, but we want her to
be the PC. Did you notice that large button labeled “Make this the player
character” back in the editing pane (Figure 2.16)? Click this button to make Foxy
Monk the main character. Now she will replace Roger as the character that you
play. So now, Foxy is a PC and Roger has turned into a NPC. While we’re at it,
let’s go ahead and take Roger out of the game completely. Double-click on cEgo
(yes, that’s his script name) under Characters in the Project Tree and change his
starting room to 0. Room 0 can always be used to make a character disappear, as
long as it’s not the main character. Now run the game again. Foxy Monk should
appear all by herself and you should be able to move her around the whole screen.

Let’s explore a few other character options. I don’t know about you, but to me,
Foxy was moving a bit too slowly around the screen. Double-click on Foxy’s
character in the Project Tree and go back to the Properties Pane. Find the
MovementSpeed option under the Movement setting and increase it from 3 to
6. Run the game now and see if you like her speed better. I’m not so happy with
the position she’s at when the game starts. I think I’d like her to start in the upper
left-hand corner. Find the StartX and StartY options under the Design
section and change them to 30 and 50 respectively. Run the game now and Foxy
will start her adventures at the top and to the left. Woohoo!

Summary

Side Note: If you’re wondering about all this business about Roger and cEgo, and
why the default main character is named that, here’s a little back story. Chris
Jones, the creator of AGS, is (obviously) a big adventure game fan, and one of his
favorite adventure games is Sierra On-Line’s Space Quest. The main character in
that game was named Roger Wilco, who was a janitor on board a space vessel
who eventually became captain of his own ship. Anyway, Chris paid homage to
Space Quest by making the default character in AGS Roger Wilco. So, why is
Roger’s script name cEgo? Well, EGO was the internal script name that Sierra
used for the main characters in its early games, and so that tradition made its way
into AGS in the form of cEgo.

Game Design with AGS

46

In this chapter, we learned about how to create your first character, and along the
way we learned about sprites and views.

• Sprites Sprites are the individual graphics that are in your game; for
example, the animations that are associated to a character are each
made up of one or more sprites. Sprites aren't just for animations,
though. A button's image is a sprite, and so is the mouse cursor image.
Sprites are imported and managed through the Sprites editor in the
Project Tree.

• Views Views are collections of animations. An individual animation is
called a Loop. Views are made up of one or more Loops. Loops that
contain grapes, apples, and oranges are called Fruit Loops.

• Characters Your game has to contain at least one character, and most
games will have many more than that. Characters that the player
controls are called Player Characters (PCs), and characters that are
computer-controlled are called Non-Player Characters (NPCs). We’ll
be creating an NPC for our game in a later chapter.

Chapter 3

Rooms and Events

A game with no room is like a forest with no trees. Now that we got the
philosophy out of the way, let’s give our friend Foxy Monk a better place to play
than a black screen. Like we said before, a room in AGS will contain the
background graphic, any objects that are in the room, the room script, and many
other things.

Simple Backgrounds
The black background for room 1 was good enough to get our character walking
around. But let’s add some color to the room and give Foxy Monk a place where
she can frolic in some grass. If you want to make your own background, then go
ahead. Otherwise find the file called simple_bg.bmp. This file will contain a nice
little tree and a small pond. The file is 320 pixels wide and 200 pixels high.
“Hmmm…Where did they get those number from?” you might be asking
yourself. Well, let’s take a little detour and explain that. Do you remember the
General Settings option in the Project Tree? It’s all the way at the top. If you
double-click that, the General Settings editor should open up and you should see
that the default game’s Resolution option is set to 320x200. So we made our
background image that size in order to fit perfectly in the room. Now that you
understand that, let’s go ahead and put that image into the game as room 1’s
background.

Figure 3.1: General Settings and Game Resolution

Open the room editor and edit room 1 by expanding the Rooms node in the
Project Tree and double-clicking on Edit Room under the 1: node. Room 1’s
editor should be in the Editing Pane now and you should be looking at our famous
black background. Changing the background is so easy that you’re going to laugh

Game Design with AGS

48

at me when I tell you. Click the Change… button at the top of the edit screen.
(Figure 3.2).

Figure 3.2: The Change... Button for Room 1

A File Chooser window should pop up. Navigate to the file simple_bg.bmp and
choose it, then click Open. You should see the black background turn into your
new Tree-Pond-Grass background. And yes, that’s what I want to call it. Press
F5 now to run the game and have Foxy run amok around our beautiful scenery.
Click on different parts of the screen to have Foxy walk around. Ok, ok, so you
may have noticed that Foxy is walking on everything! I mean, not only is she
walking on the grass where she’s supposed to walk, but she can walk on the
water, on the tree, even in the sky! Not only that, but when you start the game,
she’s up in the tree. Well, we’ll fix that in a little while. For now though, as an
exercise, why don’t you change Foxy’s starting position so she’s on the grass
somewhere. As a hint, go to the room editor and move your mouse around the
background. You should notice that the Mouse Position coordinates, which are
under the Change button you clicked earlier, are changing. Choose a nice place
to start Foxy (we’re choosing 110,167) and set her starting coordinates. If you
don’t remember how to do it, look at the previous chapter.

Side Note: This would be a good time to learn how to name your rooms. Click
on 1: under Rooms in the Project Tree. Now look at the Properties Pane and
change the Description option to something descriptive. We’re going to name
room 1 Pond.

Rooms and Events

49

Figure 3.3: Tree-Pond-Grass background

Scrolling Backgrounds
Before we fix the problem of Foxy walking everywhere she’s not supposed to,
let’s do a couple more things first. As we said earlier, we imported a background
that was exactly the same size as game’s resolution (320x200 in this case). This
is fine and dandy, and it means that the player will be able to see the entire
background all the time. What would happen, you might wonder, if we used an
image for the background that was bigger than the game’s resolution? That is,
instead of a background of 320x200, what if we used one that was 721x200 for
example? We’re glad you asked! We just happen to have a file of that size.
Let’s load it up and test it out!

Quit out of the game if it’s still running, and go back to the room editor. We’re
going to change the background that we just imported to a bigger one so we can
see what happens. Click on the Change button again, and this time when the file
dialog opens, choose the file scrolling_bg.bmp. After you click Open, you’ll get
a warning message like the one in Figure 3.4, letting you know that this new
background image is a different size than the one you’re currently using. If we’d
done a lot of work with our room, like adding regions or hotspots or something,
then changing a background like this would clear all of those areas, which is
basically what this message box is telling you. This new background does cause
us to have to redo the walkable area in this room, which we’ll do in just a minute.
Click Yes on the dialog box.

Game Design with AGS

50

Figure 3.4: Warning Message

Our new room’s background looks very similar to the one we just loaded, but
with one important difference: there are scrollbars around the image now! Scroll
to the right a bit and you can see more of the background. Now let’s fix that
walkable area issue. Our default room actually had a walkable area, which is
what allowed Foxy to walk around the screen, and importing this new background
cleared that walkable area, which keeps Foxy from being able to move! We’ll get
to more about walkable areas later, but for now let’s put back the walkable area in
this new background.

Figure 3.5: Scrolling Tree-Pond-Grass background

Look at the room editor, just above the background image, where it says Show
this room’s. Click the drop-down box next to that and select Walkable areas
(Figure 3.6). Now, click on the Fill tool at the top of the screen (circled in red in
Figure 3.7) and then click anywhere on the background. This will turn the
background blue. Don’t worry about what this is yet, we’ll talk about this more
later in this chapter.

Rooms and Events

51

Figure 3.6: Choose Walkable areas from the Dropdown box

Figure 3.7: The Fill Tool

Ok, now that we’ve fixed the walkable area, run the game again by pressing F5.
Now click close to the right side of the screen to have Foxy walk there. When she
gets about halfway across the screen, the background will start to scroll!

Animating Backgrounds
Let’s do one more cool thing with backgrounds before we move on. As you
might have guessed for this section’s title, we’re going to add animation in the
background. And what better to animate than the pond. Normally, when one is
taking a long stroll by a water pond, with a windowless shed and a tree in the
park, one would notice that the water ripples ever so slightly as the wind whispers
around it.

To make an animating background, you need to simply copy your background
image for each frame of animation you want and change the parts of each image
that should be animated (in our case, the pond). AGS allows you to have up to 5
frames of animation that make up your animating background. We’ve already
created 5 background images for you that show the animating water (aren’t we
nice?). In each image, the water in the pond is slightly different so, when they are
animated it will look like the water is rippling or waving.

Ok then! Let’s ripple us some water.

Game Design with AGS

52

Quit the game and go back to the room editor and edit room 1 by double-clicking
it. If your room is still blue from the last section, click the drop-down box next to
Show this room’s, and select Nothing (see Figure 3.6) to get rid of the blue-ness.
Click the Change... button to change the background and choose the file named
RipplePond1.bmp. You should see some white show up in the pond. This will be
the first image that we’re going to add to the background to create the ripple
effect. To add the other 4 images, open the drop-down box next to Background
to display: (this will say “Main background”) and choose Import new
background. Say Yes to the popup and choose the file RipplePond2.bmp. Do
this 3 more times choosing the next RipplePond files in the series. Ta da! You
have an animating background.

Run the game by pressing F5. When Foxy shows up to the tree-pond-
windowless-shed park now, she’ll be able to enjoy a nice ripply pond to stroll
next to (or even into!). But hang on a minute. We think the water is moving just
a bit too fast. With that speed, we’d have to make the tree sway back and forth
too. We’re too lazy for that, so let’s just slow the water down. Look at the
properties pane and find the Settings section. You’ll see a setting called
BackgroundAnimationDelay (Figure 3.8). Change this setting from 5 to 8.
(We played with it and thought 8 looked best. You can do whatever delay you
like).

Figure 3.8: Background Animation Delay

Walkable Areas
That’s right ladies and gentlemen; it’s time to make sure Foxy Monk doesn’t walk
on things that she shouldn’t walk on. Walkable areas in AGS are special areas
that are drawn onto the background where characters are allowed to walk. AGS
allows you to have up to 15 different walkable areas that you can turn on and off
at will. As you should already know, there is one walkable area that was
automatically created for you when the game was created. We played a little bit
with this area before (when it disappeared on us) by putting it back to allow Foxy
to walk again. Now we’re going to fine tune this walkable area so Foxy only
walks where she’s supposed to.

Now let’s see; people don’t normally walk on the sides of houses and on the sky,
right? We’ll go with that for now. Look at the room editor, just above the
background image, where it says Show this room’s. Click the drop-down box
next to that and select Walkable areas (Figure 3.6). Now, click on the Fill tool at

Rooms and Events

53

the top of the screen (circled in red in Figure 3.7) and then RIGHT-CLICK
anywhere on the background. This will turn off the blue color. Notice that
before, we LEFT-CLICKED to create the blue color. So, you should right-click
to get rid of a walkable area, and left-click to create one. If you look between the
Properties Pane and the Project Tree, you will notice a drop down box that says
“Walkable area ID 1.” This tells us that we’re currently editing the first walkable
area, which happens to be the default one.

Figure 3.9: Walkable area ID location

Now comes the fun part. We have to create a new walkable area that makes more
sense. Choose the Freehand tool from the toolbar (Highlighted in Figure 3.10).
Now we’re going to see how good you are at free-hand tracing around the picture.
Start anywhere you like and trace around the shack, right at the horizon, around
the bolder (we don’t want Foxy walking on that because she’s a bit clumsy and
could trip and fall), and around the base of the tree so that Foxy doesn’t trample
the flowers, and around the pond because Foxy is a fox and not a duck.

Figure 3.10: Freehand Tool

 When you’re done, it should look something like Figure 3.11.

Figure 3.11: Freehand Tracing (blue line)

Game Design with AGS

54

Choose the Fill tool from the toolbar and click anywhere Foxy is ALLOWED to
walk. You should have something that looks like Figure 3.12. The blue (not
including the water) is Walkable Area 1 and will be the only place that Foxy can
walk. If your blue covers more area, then undo and check your edges. You might
not have closed your line somewhere. Notice that we left a bit of an edge around
everything so that Foxy doesn’t go right up to something and smack right into it.
Also notice that I didn’t trace around the tree itself. This does mean that Foxy
will still be able to walk right onto it, but that’s ok for now (we have plans for that
tree). Ok now for the fun part:

Figure 3.12: Completed Walkable Area

Run the game and walk around. You’ll find that you will not be able to walk
anywhere that is not blue (of course, you can’t see the blue areas in the actual
game!). In fact, click on one side of the shack and wait for Foxy to get there.
Then click on the opposite side of the shack. You’ll see that Foxy is now smart
enough to go around the shack to her new destination. Now to take care of that
whole walk-on-the-tree-trunk business…

Walk-Behinds
Foxy shouldn’t be able to walk on the tree, but she should be able to walk behind
it. That’s where walk-behind areas come in. Walk-behind areas in AGS give
your game an illusion of depth by allowing characters and objects to appear to
walk behind sections of your background. Since we want Foxy to be able to walk
behind the tree, we have to allow her to walk across that area (which is why we
kept the walkable area on top of the tree in the last section), but we need to create
a walk-behind area so that Foxy will disappear when she walks behind the tree.
Let’s do that now.

First, select Walk-behinds from the drop down box that says Show this room’s.
Now, trace the tree just like you traced the walkable area in the last section.
You’ll need to be a little more precise here so zoom in as far as you can to make
the outline of the tree follow as closely as possible to the picture.

Rooms and Events

55

Once you have the tree outlined, your room’s walk-behind should look something
like Figure 3.13. Notice the very top of the picture, just above the sky. Do you
see a blue dashed line going across the picture? This line is the baseline of the
walk-behind area. The baseline is important, so pay attention here.

Figure 3.13: Walk-behind on the Tree

Every walk-behind has a baseline, which is an imaginary line that gives AGS
information on when the character should be drawn behind the walk-behind area.
You can click and drag this baseline up and down to wherever you want it to be.
Whenever a character’s baseline* is above the walk-behind's baseline, the
character will be drawn behind the walk-behind area. Conversely, whenever a
character’s baseline is below the walk-behind's baseline, the character will be
drawn in front of the walk-behind area. Occasionally, the placement of the walk-
behind's baseline takes a little thought, but most of the time the baseline should be
placed snug against the bottom of the walk-behind area. Figure 3.14 shows where
we put the baseline of the tree walk-behind area.

Side Note: If you want more control over drawing the walkable areas or walk-
behind areas of your room than AGS editor allows, you can always use a paint
program of your choice to create an image mask and use it instead. More
information on this can be found in Chapter xyz.

Game Design with AGS

56

Figure 3.14: Baseline for the Walk-behind

Now that we’ve defined the walk-behind area, Foxy should be able to walk
behind the tree. Run the game and see if it works. When Foxy goes behind the
tree, she should really go behind the tree (Figure 3.15)! If Foxy doesn’t walk
behind the tree for you, go back and make sure your baseline is set correctly.

Side Note: By default, the character's baseline is set to the very bottom of the
sprite that is used to display the character. If that sounds confusing, just think
about the character's baseline as being the same thing as the character's feet.
Unless your character is an inverted Squirkle with 7 feet from the planet Vexus,
this analogy should work pretty well for you.

Side Note: By the way, remember how we outlined the flowerbed at the base of
the tree when we were creating our walkable area in the last section? The reason
we excluded the base of the tree from the walkable area was that it adds to the
illusion of depth by making it appear that Foxy walks around the tree. If she
could walk directly up to the tree, it would make the tree seem paper thin, which
is obviously not what we want. If you want to see what we mean, go back to your
walkable area and fill in the flower bed so that Foxy can walk there, then run the
game and have Foxy walk around the tree. The tree seems kinda flat, huh?

Rooms and Events

57

Figure 3.15: Foxy Hiding

Regions (not the bank (this was funny at the time of writing))
A Region is basically a place that the character walks onto and something
happens. That makes no sense; let me try again. A region can be a spot that
triggers an event and/or changes the environment. For example, you could
change the light level or color tint in that region. You can also trigger events
when a player walks INTO the region, OUT OF the region, or is just STANDING
in the region. I believe this could best be explained with an example. So guess
what?

Nope, you guessed wrong! We’re going to add another room!!! And what better
place to add a new room than inside our shack? You can draw your own room of
course, but, we did the hard work and you should be able to find a file called
ShackRoom1.png, which will become the inside of our shack.

To start, right-click on Rooms in the Project Tree and choose New Room. Keep
the default options and click OK . Double-click on Edit room under 2: in the
Project Tree and go ahead and give this room a good name by typing in a name in
the Description field of the Properties Pane. We’re calling ours Main
Hall .

Now think way back to when you first added a background to a room. Do you
remember how you did it? Good! Add a background to this room using the file
ShackRoom1.png (or one that you made).

Great! Now we need a way for Foxy Monk to be able to walk from outside the
shack to inside. That’s what we’ll use a region for. We’re going to put a region

Side Note: Maybe explain the options in the New Room dialog

Game Design with AGS

58

right in front of the door on the outside of the shack. Basically, when Foxy Monk
steps onto the region it would be as if she walked through the door. Go back to
the Project Tree and double-click Edit Room under 1: Pond to edit room 1.
(Notice that AGS will only allow you to edit one room at a time. Whenever you
start editing a room, it will close the previously opened room.) Scroll the
background of the Pond room so you can see the shack’s door on the right. Now,
select Regions from the drop down box that says Show this room’s. Look at the
space between the Project Tree and the Properties Pane. You should see a drop-
down box with Region ID 0 (or 1) in it. This is where you select which region
you want to work with. AGS allows you to have up to 15 regions. Region 0 is an
eraser region and can’t be used for what we want (you use it to get rid of other
regions). Choose Region ID 1 from the drop-down box so we can draw our first
region. (Figure 3.16).

Figure 3.16: Choosing Region 1

Drawing a region is very much like drawing a walkable area. Enclose the area for
the region with a drawing tool and fill it in. To make our door-to-the-shack
region, we chose the Rectangle tool (The blue box in Figure 3.10) and made a
small rectangle right in front of the door as in Figure 3.17. Don’t make this
rectangle too big, otherwise Foxy Monk will go inside the shack when she’s far
away from the door and that would be just crazy.

Figure 3.17: Region in Front of the Door

That’s all there is to making a region; Except for that whole scripting thing. But
before we start scripting, we need to add an event to that region. You see that
thunderbolt symbol in Figure 3.16? Good. Go ahead and click that. Once you
click it, the Properties Pane will change to show 3 different events:

• Walks off region
• Walks onto region
• While standing on region

Rooms and Events

59

This tells us that we can do something when the character walks off of the region,
do something else when the characters walks onto it, or do something repeatedly
as long as the character is standing on the region. For our purposes, we want to
use the Walks onto region event to make Foxy Monk change rooms when
she walks up to the door. To create the script, click on Walks onto region
and then click the ellipses that will show up to the right of the input area next to
the Walks onto region option (Red circle in Figure 3.18). Doing this will
open the script editor for room 1. (The script editor can also be opened by
double-clicking Room script in the Project Tree, but that will not add events; it
will just open the script editor.)

Figure 3.18: Click the Ellipses to Add a Script

Now for the fun stuff. Oh boy, we’re going to get into a bit of scripting now.
Don’t worry; it’s really not as hard as it sounds. AND it doesn’t sound hard.
Huh?
You should see a new function called region1_WalksOnto() . A function is
a set of instructions that are grouped together to perform a certain task. Nifty
huh? Make the function look like Listing 2.1.

function region1_WalksOnto()
{
 cFoxyMonk.ChangeRoom(2, 155, 184);
}

Listing 3.1

Let’s dissect this line-by-line:

function region1_WalksOnto()

This line declares the function region1_WalksOnto that AGS created for us.
Notice that the word function is colored blue—this tells you that it’s a word
that has special meaning in AGS’s scripting language. In this case, the word
function means that we are beginning to define a function, and the name that
follows, region1_WalksOnto , is the name of the function we’re defining.

Game Design with AGS

60

Following the name of the function we would define any parameters that need to
be passed to the function to help it work. For example, there’s a function called
Say that is used to cause a character to say something. Well, if we were using
that function, we’d need to tell it what the character should say. This text would
be passed to the function as a parameter. Function parameters are included in
parentheses after the function name. (The region1_WalksOnto function
doesn’t require any parameters, so there’s nothing within the parentheses.)

 {
 cFoxyMonk.ChangeRoom(2, 155, 184);
 }

These next lines are the body of the function. Everything within the curly braces
is considered part of the function. In our case, there’s only one instruction in our
function.

Remember when we were creating Foxy Monk, there was an attribute in her
character properties called Script Name and we set it to cFoxyMonk ? Any
time we want to refer to Foxy in the script, we have to call her by her Script Name
(appropriate, eh?). So, you can see above that we say
cFoxyMonk.ChangeRoom . This causes Foxy Monk to eat a jelly donut. No
wait! I mean it causes her to change rooms. This time we’re calling a function
instead of defining one. But what are all those numbers for in the parentheses?
Those are the parameters that the ChangeRoom function needs. If you were
observant (and assuming you didn’t just copy and paste the code above but
actually typed it) you would have noticed that when you typed that open
parenthesis after the ChangeRoom function, there was a tool tip that popped up
(Figure 3.19). If you did happen to copy and paste the code, or if you just didn’t
see this tool tip pop up before, you might want to try to re-type this line into AGS
by hand so that you can see it. This tool tip is there to help you remember what
parameters are required for the function that you are using. The first parameter
for ChangeRoom is called room , and it’s an integer (we know that because it
has an “int” in front of it, which stands for integer). This is the room that we want
Foxy to change to. In our case, we want her to change to room #2 (the Main Hall)
so we type 2 for the room parameter. The second and third parameter are both
optional (hence the “optional” keyword in front of each parameter) so we don’t
have to supply these at all, but we will anyway. These two parameters are the x
and y coordinates of where Foxy should be located in the new room when she
shows up there. We chose coordinates 155 for x and 184 for y.

Rooms and Events

61

Figure 3.19: Tooltip Pop-up

X and Y Coordinates

The ChangeRoom function seems pretty simple, right? If you’re confused as to
what the x and y coordinates are that we talked about at the end there, we’ll try to
shed some light on that here.

AGS uses x and y coordinates to specify the location of something in your game.
The x coordinate is the distance the object is from the left edge of the room, and
the y coordinate is the distance the object is from the top edge of the room. These
distances are measured in pixels, which are the tiny little dots that make up the
image on your computer screen. So, an object that is located at x coordinate 110
and y coordinate 167, or (110, 167) as it’s sometimes written, is 110 pixels from
the left edge of the room, and 167 pixels from the top edge of the room, as in
Figure 3.20 below.

Side Note: You MUST use AGS to create the function as we did here. You
CAN’T just open the script editor and type a whole function in because AGS
won’t know to connect the function to its event. That is, the step that we did at
first, where we clicked the ellipses button to create the region1_WalksOnto
function, was very important. Clicking that button not only created the function
for us, but it also told AGS to run that function whenever that event (the player
walks onto the region) happens. If we had just gone into the room’s script file
and manually created this function without clicking the ellipse button first, then
AGS wouldn’t know to run the function when the event happened.

Game Design with AGS

62

Figure 3.20: Foxy is 110 pixels from the left edge of the room and 167 pixels from the top.

There’s one “gotcha” here to keep in mind. In AGS, x and y coordinates are
relative to the room and not to the screen. For most rooms, the size of the screen
and the size of the background will probably be the same, but in the case of our
Pond room, which has a scrolling background, the room is larger than the screen.
So, an x coordinate of 342, for example, refers to a location 342 pixels from the
left edge of the room, not 342 pixels from the left edge of the screen, since the
screen itself might be scrolled to the right.

Let’s review and run!

Side Note: How do you know what x and y coordinates to use? Well, open your
room in the room editor (double-click Edit room) and move your mouse around
on your room. Do you see at the top, where it says Mouse Position? This tells
you the x and y position of your mouse cursor. So, just put your mouse at the spot
in your room where you want Foxy’s feet to be, and then look at the value of
Mouse Position. Plug those numbers into the script and that’s all you need to do!

What happens if you don’t supply those optional parameters? Many functions in
AGS have optional parameters and each function behaves differently if you don’t
supply them. In the case of ChangeRoom, for example, if you didn’t supply the x
and y coordinates then Foxy’s position wouldn’t change in the new room. In
other words, her x and y coordinates would remain the same from one room to the
other. So if she were standing at x, y coordinate (10, 137) and you called
ChangeRoom but didn’t specify a new x, y location, then she would be at location
(10, 137) in the new room as well. Other functions that have optional parameters
have fixed default values that they will take if you don’t supply them. When in
doubt, just hit F1 and refer to the manual. It will tell you what the default values
are for each optional parameter in AGS.

Rooms and Events

63

 That’s all there is to the function. Let’s review real quick:
• We created a region in front of the house that will be used to cause

Foxy to enter the shack.
• We created an Event that was associated to that region so that

whenever Foxy walks onto the region it calls our function
region1_WalksOnto .

• Inside this function is the scripting command that actually causes Foxy
to change rooms.

Cool huh?

Now run your game and have Foxy walk just in front of the door to the shack. If
everything worked correctly, Foxy will now be inside the shack! Yippee! Oh
hang on a second… She can’t move around in this new room at all (are her feet
stuck in cement?), and she can’t get back to the pond yet.

First things first: Foxy can’t walk around in the new room because we haven’t
created a walkable area for her yet. Remember that a walkable area defines the
area on the screen where characters can walk, and since we haven’t created one
yet in our new room, Foxy can’t walk around at all! That’s easily fixed. Go back
to the room editor by double-clicking on Edit room under the Main Hall room in
the Project Tree. Open the Show this room’s dropdown box and select
Walkable areas. You should be quite familiar with this now. Trace around the
floor area using the Line tool (Figure 3.21) and then fill that with the Fill area tool
(Figure 3.22). Make sure to add a little extra walkable area that goes up into the
top room (You’ll see why later).

Figure 3.21: Trace the Walkable Area in the Main Hall

Game Design with AGS

64

Figure 3.22: Complete Walkable Area in the Main Hall

Now if you run that game you should find that Foxy can walk around in the
shack, but there’s still one problem: once she enters the shack, there’s no way for
her to leave! Don’t worry Foxy, we’ll fix that in a little bit. For now, though,
let’s take a small detour and talk about room events.

Room Events
When you’re writing your game, you’ll want the game to be able to react to
different actions that the player takes while she’s playing. For example, you
might want to be cause the character to say something when the player enters a
room for the first time (“Wow, this place looks spooky!”), or you might want an
object to move somewhere if the player enters a room from the left side or
something. These things can be handled through the room’s events. The events
for the room are different than the ones we’ve seen for regions. If you don’t
already have the room editor open, go ahead and double-click Edit Room for one
of the rooms (it doesn’t matter which one). If you take a look at the list of events
for the room we have open by clicking the lightning bolt icon in the Properties
Tree, you’ll see 9 different events listed.

• Enters room after fade-in : When your room becomes active, it
fades in, or gradually becomes visible. Once the room has faded in and
AGS is ready for the player to interact with the room, this event is
triggered. This event is useful for doing things right when the player
comes into the room.

• Enters room before fade-in : Before your room has faded in,
but just before AGS is getting ready to fade it in, this event is triggered.
General things like setting up objects in the room or making sure variables
are set right can be done in this event.

• First time enters room : This is just like the Enters room
after fade-in event, except it only occurs the very first time the
player enters this room, and never again.

Rooms and Events

65

• Leaves room : When the player leaves the room, just before AGS is
getting ready to bring up the next room, this event will be triggered.

• Repeatedly execute : This event is triggered over and over again
throughout the entire life-cycle of the room. Normally, this means that
this event is triggered 40 times per second while the room is active.
Things that you want to check on a continuous basis can be put in this
event. For example, timers will use this event (which we’ll discuss in
detail in Chapter xyz).

• Walks off bottom edge : When the player walks off the bottom
edge of the screen, this event is triggered. Most of the time, this event will
be used to move the character to another room but it could be used for
other things too, like if the bottom edge of the room leads to a pit full of
snakes, then this function might cause the character’s untimely death!

• Walks off left edge : This is just like Walks off bottom
edge , but it’s triggered for when the player walks off the left edge of the
room.

• Walks off right edge : Ditto, but right edge.
• Walks off top edge : Do I really have to explain this?

In the next section, we’ll discuss more about the last four events. Right now,
Foxy has no way of getting out of the Main Hall once she’s in there, and we
promised her a minute ago that we’d fix that, so… Onward!

Room Edges
Regions are one way to change rooms, but it’s not always the best way. Most of
the time room changes will occur as the character walks off one of the room’s
edges.

The first thing we should do is allow Foxy to leave the shack and get back out that
door. We could create a region at the bottom of the shack floor and put some
code in place for that region to move Foxy out to the pond area, or, we could use
the room’s bottom edge for that. Since changing rooms happens at the edges
most of the time, room edges cut down on some of the work of having to draw the
regions.

Start by going to the Show this room’s drop down box at the top of the room
editor. (We’re assuming you know where this is by now.) Choose Edges from
the drop down and you should see 4 yellow lines – one for each edge (Figure
3.23).

Game Design with AGS

66

Figure 3.23: Room Edges

Be aware that one or more of the edges might be, literally, right up along the
edge, so look hard to find them (The left edge in Figure 3.23 is flush against the
left side). Just like you can create a function that runs when a character enters a
region, you can also set up a function that runs when a character crosses one of
these edges. To leave the shack, we want to fire up a function when Foxy crosses
the bottom edge (where she came in). We need the bottom edge to be moved up
a little so that Foxy can actually cross it. Click and drag the bottom edge so that
the y coordinate (that’s the second number in the Mouse Position) is set at about
188.

Now let’s write the function. Click the lightning bolt between the Project Tree
and the Properties Pane. You should see some events pop up. One of these
events should be Walks off bottom edge . Click on that event and then
click on the ellipses button on the far right that will pop up. This is going to
create the function, link to the event, and place you in the function (script) editor.
The code for this function is going to be very similar to the code for the region we
created earlier and looks like Listing 3.2.

function room_LeaveBottom()
{
 cFoxyMonk.ChangeRoom(1, 634, 108);
}

Listing 3.2

As you can see, the differences between this function and the last one we wrote
are the name of the function, the room number to change to, and the x,y

Side Note: From now on, when we refer to the edges of a room, we will be
talking about the edges that we can drag and NOT the physical edge of the
picture.

Rooms and Events

67

coordinates. We chose those coordinates by looking at room 1 (the Pond) and
placing the mouse where we want Foxy to be when she comes out. Oh, and make
sure not choose chose any x,y coordinates that are right in the region we created
in room 1. Otherwise Foxy will never be able to leave the shack because as soon
as she does, she’ll step on the region and come right back in.

And that’s all there is to edges. While we’re here, let’s go ahead and create the
two remaining rooms in the shack and create edges to get into and out of them.
Find two files named ShackRoom2.png and ShackRoom3.png. Create two new
rooms with those files as backgrounds. Make ShackRoom2.png room 3 and
ShackRoom3.png room 4. Well ok, so the numbering can get confusing. Live
with it. Name room 3 “Bathroom” and room 4 “Longroom.” Hopefully you
remember how to do all that. Now create walkable areas in both rooms that look
something like Figure 3.24.

Figure 3.24: The Other 2 Room in the Shack

And yes, I know that the walkable area in the bathroom goes behind the wall, so
guess what you have to do with that. Yep, create a walk-behind for it so it looks
like Figure 3.25 (we created two). And remember to set the baseline for your
walk-behind all the way at the bottom so that Foxy will always be behind that
wall when she walks there.

Game Design with AGS

68

Figure 3.25: Walk-behinds in the Bathroom

Great! Now we’re ready to add some functions for two more edges in our first
shack room. Let’s start with the bathroom. Go back to editing room 2’s edges
and drag the top edge so that it’s just at the junction where the floor meets the
walls (Figure 3.26). Once the edge is in the correct spot, create a new function for
the Walks off top edge event (hint: click the ellipses button next to the
event) and make it so it looks like Listing 3.3.

Rooms and Events

69

Figure 3.26: Set the Top Edge at the Bottom of the Wall

function room_LeaveTop()
{
 cFoxyMonk.ChangeRoom(3, 160, 189);
}

 Listing 3.3

Before running the game, go ahead and add the right edge function to move Foxy
to room 4. I’ll let you do that on your own. Run the game and walk around.
Then, once you realize that your stuck either in the bathroom or the longroom, go
ahead and write the functions to exit out of those rooms using the bottom edge of
the bathroom and the left edge of the longroom. Our code for that is in Listing
3.4. The first function is in room three’s file and the second function in room
four’s.

function room_LeaveBottom()
{
 cFoxyMonk.ChangeRoom(2, 159, 118);
}

function room_LeaveLeft()
{
 cFoxyMonk.ChangeRoom(2, 310, 168);
}

Game Design with AGS

70

Listing 2.4

Lighting
Some of you may have noticed that there's a light in the Long Room. I'd say as
long as there's that light there, let's use it to our advantage and create a lighting
effect for Foxy. Edit room 4 and create two regions right under the light and in
the cone of the light as in Figure 3.27.

Figure 3.27: The Two Lighting Regions

 Now here's how easy it is to set the lighting. Choose Region ID 1 from the
dropdown between the Project Tree and the Properties Pane. Change the
lightLevel property from 100 to 150. Choose Region ID 2 and change that
light level from 100 to 120. Run the game and go into that room. Walk around in
and out of the regions and watch how the lighting on Foxy changes.

You can cause a character to ignore light levels by setting the
IgnoreLighting attribute of the character to False within the script, or by
setting UseRoomAreaLighting to False in the Character editor.

Scaling

Scaling in AGS is simply a way to make characters appear larger or smaller. For
example, when Foxy is walking around in the bathroom she looks like a little
child who can't reach anything. Foxy is not a little child though. We have to
make sure she fits into her surroundings well, especially if she needs to use the
toilet. Let's scale her up a notch when she's in the bathroom. Edit the bathroom
and show the room's walkable areas. In the Properties Pane, change the
ScalingLevel propery to 220. This means that Foxy will appear at 220% of
her normal size while she’s in this walkable area. Take Foxy into the bathroom
and check it out. She's HUMONGOUS.

Let's also add some scaling in the Long Room. It would be nice if Foxy got
smaller as she walked towards the back wall since she's walking away from us.
We can’t set a certain scaling level for this, though, since we want Foxy to get
progressively smaller as she walks towards the back of the room. There's another

Rooms and Events

71

property just for that and it’s called UseContinuousScaling , which is set to
False by default. Turn this option on (by setting it to True). You will notice
that AGS has replaced the ScalingLevel property with two new ones called
MinScalingLevel and MaxScalingLevel . The MinScalingLevel
property is the scaling level that Foxy will appear at when she is at the top of the
walkable area, and the MaxScalingLevel is the scaling level that she’ll appear
at when she’s at the bottom of the walkable area. Anytime Foxy is in the
walkable area, her scaling level will be set to something between these maximum
and minimum levels (depending on how far she is from the top or bottom of the
walkable area), which will cause her to get larger as she walks down and smaller
as she walks up. Edit the Long Room and view its walkable areas. If you haven’t
already, change the UseContinuousScaling property to True and set the
MinScalingLevel to 100 and the MaxScalingLevel to 200. This will
cause Foxy to get smaller as she moves to the back of the room. When she’s at
the bottom of the walkable area, she will appear at 200% of her normal size, at
when she’s at the top she’ll appear at 100%. Run the game and make Foxy walk
next to the green table on the right of the room. You should notice that she get
smaller and her head stays mostly in the same position relative to the table.

Room Transitions

Now that Foxy can go to the different rooms in the shack, we need to talk about
something called Room Transitions. This isn't something that's really a feature of
AGS but it's something to keep in mind to give your game a little bit of a
professional touch. Right now, when Foxy walks from room to room, as soon as
she passes the room edge, the game immediately moves to the next room and
Foxy instantly jumps to the correct (x, y) coordinates in the new room.

Let's pretend like we're a player of your game. We've just entered the shack for
the first time and we're exploring a bit and walking around. We walk Foxy over
near the right side of the screen because we want to see something over there, and
BOOM! We cross the right edge of the room and we're suddenly in another
room. If we didn't know that we just crossed the right edge of the screen, we
might be a little confused as to why we're suddenly somewhere else.

A much more elegant alternative would be, as soon as Foxy crosses the right edge
of the screen, she continues to walk off the screen before the room changes and
then, when the new room appears, we see Foxy walk into the screen from the left
side. This kind of attention to detail is what will make your game stand out and
will give it a bit more of a polished look and feel.

So, how would we go about doing this? Well, we've really already outlined what
we need to do; we just need to write it into the script.

Game Design with AGS

72

There are two things we need to accomplish here. First, we said that when Foxy
crosses the edge of the screen we want her to continue to walk off the screen
before the room changes. And the second thing we want is, when Foxy enters the
new room, she should walk in from the left side of the screen.

Walking off the screen
Open the room script for the Main Hall room. Find the function we created in the
last section called room_LeaveRight . Change that function so it looks like
this:

function room_LeaveRight()
{
 cFoxyMonk.Walk(335, cFoxyMonk.y, eBlock, eAnywher e);
 cFoxyMonk.ChangeRoom(4, -15, cFoxyMonk.y);
}

You can probably figure out what that Walk statement does. This is where we tell
Foxy to walk off the right edge of the screen before the room changes. The first
two parameters are the x and y location that we want her to walk to. We're doing
something a little strange with each of these parameters (so pay attention!).
Remember back to our background image of this room. Its dimensions are 320
pixels wide by 200 pixels high. Why, then, did we choose an x location of 335 to
pass to the Walk function? That's not even within the bounds of the background!
But wait, we want Foxy to walk off the screen before she changes rooms so this is
ok. An x location of 335 will give us this effect. But what about that y location?
What the heck is cFoxyMonk.y ? This simply refers to the current y location of
Foxy. By using this value instead of hard-coding a number, she will walk in a
horizontal direction as she walks off the edge of the screen.

The next parameter to the Walk function is the blocking style. This tells AGS
whether or not to wait for this command to finish before moving on to the next
line of scripting. There are two possible values you can use here: eBlock , which
causes the script to stop at this command and wait until it finishes before moving
on, and eNoBlock , which immediately continues with the rest of the script
without waiting for this command to finish. We're using eBlock in this case,
because we don't want Foxy to switch rooms until after she has finished walking.

Finally, the last parameter tells Foxy whether she has to obey the walkable areas
we've defined in the room in order to reach her destination. The two values you
can use here are eWalkableAreas and eAnywhere . If we use
eWalkableAreas then Foxy will only walk on the Walkable areas. This isn't
what we want, since we're explicitly telling her to walk off the edge of the screen
where there's no walkable area defined. So, we'll use the other option for this

Rooms and Events

73

parameter, eAnywhere , which allows Foxy to walk anywhere on the screen (or
even off the screen!).

So that takes care of the walking part. But we also changed the ChangeRoom
line as well. As we learned in a previous section, the ChangeRoom function
takes 3 parameters—namely, a room number, and an x and y location of where
she will be in the new room. The room number didn't change but we did change
the x and y location. We're using an x location of -15 for the same reason we
used 335 for x earlier: we want Foxy to walk into the new room from off the
screen so we need to set her x location to be off the left edge of the screen. This
will be her starting location in the new room. The y location doesn't need to
change from room to room, so we can just use cFoxyMonk.y for it. So to
reiterate: To walk Foxy OFF the screen, tell her to walk completely off the edge
of the screen and then set her new (x,y) coordinates (for the new room) also off
the screen so that she can start there and walk onto the new screen. Confused?
Don't worry. You just need to see it in action and you'll get it soon enough.

So that takes care of walking off the screen. Now we need to handle the situation
where Foxy walks back onto the screen in the new room. Double click Edit
Room under Room 4: Longroom to bring up the room in the editor. Now, click
on the Events button (the one with the lightning bolt) to bring up the events tab,
and look for the event Enters room after fade-in . This event is
triggered after the room fades in, so we’ll use it to have Foxy walk in from the
bottom of the screen. Click the ellipses button next to the event which will create
a new script called room_AfterFadeIn . Edit that function so it looks like
this:

function room_AfterFadeIn()
{
 if(cFoxyMonk.PreviousRoom == 2)
 {
 cFoxyMonk.Walk(23, cFoxyMonk.y, eBlock,

eAnywhere);
 }
}

Here, we're doing two things. First, we're checking to make sure that the room
that Foxy was just in was the Main Hall. If it was, then we're going to have her
walk from her current position to somewhere just inside the room.

if (cFoxyMonk.PreviousRoom == 2)

This line does the checking part. We're using an if statement to look at Foxy's
PreviousRoom attribute to see if she was just in the Main Hall (room 2). Note

Game Design with AGS

74

the use of the double equals signs. Double equals signs are used for testing
equality, so don't let that throw you.

Next we have an open curly brace, followed by:

cFoxyMonk.Walk(23, cFoxyMonk.y, eBlock, eAnywhere);

This is our good friend the Walk function again. This should be familiar now, but
just for clarity's sake, I'll explain it briefly. We're telling Foxy to walk to x
location 23, but ensuring that her y location doesn't change so she walks in a
straight horizontal line. We don't want anything else to happen until she gets
there so we use eBlock for the blocking style. And finally, since we're walking
outside of our normal walkable areas, we have to use eAnywhere as the last
parameter.

That should do it. Run the game and try it out. Walk Foxy into the shack then
walk to the right to see our transitions in action! Notice how she walks off the
screen to the right, then the screen changes, and we see her walk onto the screen
from the left. Man! How I wish we could do video screenshots!!!

A Little Scripting Detour...
So far our functions have been simple. You have a name for the function
preceded by the word function, you follow the name with parentheses, and then
you put the statements within curly braces like this:

function myFunction()
{
 do something here;
}

In the preceding sub-section we introduced something new: the if statement.
This statement examines a condition and only does the statements under it if the
condition is true. So to do something only if Foxy is in room 1 we say
if(cFoxyMonk.Room == 1) . If we want her to do something if she's in any
room except room 1 we say if(cFoxyMonk.Room != 1) .
Just like a function, an if statement can be a block. All the statements in an if
block will execute if the if statement is true. Use curly braces to distinguish an
if block just like you do with a function, like this:

function myFunction()
{
 if(cFoxyMonk.Room == 1)
 {
 do something here;

Rooms and Events

75

 do some more;
 }
 if(cFoxyMonk.Room != 1)
 {
 do something else;
 }
}

In this example we do two statements if Foxy is in room 1 and we do one other
statement if she's not in room 1. This would be a good time to introduce the
else clause. An if statement can have an else clause that happens only if the
if statement is false, like this:

function myFunction()
{
 if(cFoxyMonk.Room == 1)
 {
 do something here;
 do some more;
 }
 else
 {
 do something else;
 }
}

This gives us the same function but we don't have to check the room twice. If
Foxy is in room 1 do the first block, otherwise do the second. We can further
reduce this code by taking out the second set of curly braces like this:

function myFunction()
{
 if(cFoxyMonk.Room == 1)
 {
 do something here;
 do some more;
 }
 else
 do something else;
}

If an if or else clause only has one statement in it, then the curly braces are
optional.
Another important feature about if statements is the else/if block. You can
have one or more of these to test for different cases. Let's say you want to do one

Game Design with AGS

76

thing if Foxy is in room 1, something else if she's in room 2, and something
completely different if she's in any other room. It would look like this:

function myFunction()
{
 if(cFoxyMonk.Room == 1)
 {
 do something here...
 do some more...
 }
 else if(cFoxyMonk.Room == 2)
 do something else;
 else {
 do something completely different;
 sing Monty Python songs;
 }
}

One last thing to cover about if statements is checking for multiple cases all at
once. Let's say we want to do something if Foxy is in room 1 AND her x
coordinate is 35:

if(cFoxyMonk.Room == 1 && cFoxyMonk.x == 1)

The double ampersand (&&) makes the if statement true ONLY if Foxy is in
room 1 AND at the x coordinate 35. If we want to do something if EITHER she’s
in room 1 OR she’s in room 2 it would look like this:

if(cFoxyMonk.Room == 1 || cFoxyMonk.Room == 2)

The double pipe (||) symbol is an OR. The if statement will be true if Foxy is
either in room 1 or room 2.

And finally, here's a table of the tests you can do in an if statement:

Test What

= = Left term is equal to right term

! = Left term is not equal to right term

< Left term is less than right term

> Left term is greater than right term

< = Left term is less than or equal to right term

Rooms and Events

77

> = Left term is less than or equal to right term

HOMEWORK:
Make 3 more screen transitions: One for going into the bathroom, one for coming
back to the main hall from the bathroom, and one for coming back to the main
hall from the longroom. You can also add the same code to the region in room 1
and afterFadeIn of room 2 to walk Foxy in from the outside. Just as a bit of
help, here’s the final code for the afterFadeIn function of room 2.

function room_AfterFadeIn()
{
 if (cFoxyMonk.PreviousRoom == 1)
 {
 cFoxyMonk.Walk(cFoxyMonk.x, 184, eBlock,

eAnywhere);
 }
 else if (cFoxyMonk.PreviousRoom == 3)
 {
 cFoxyMonk.Walk(cFoxyMonk.x, 120, eBlock,

eAnywhere);
 }
 else if(cFoxyMonk.PreviousRoom == 4)
 {
 cFoxyMonk.Walk(300, cFoxyMonk.y, eBlock,

eAnywhere);
 }
}

Summary
Rooms are an integral part of any game in AGS. In this chapter we talked about
the main elements of rooms:

• Rooms The Room editor in AGS is actually one of the more complex
editors, but it's important to understand how to use it. Rooms are where
the game action happens. Rooms in AGS aren't necessarily “rooms” in the
traditional sense, in that they might not have four walls, a floor, and a
ceiling. A room can be an outdoor area just as well as a traditional room
inside.

• Backgrounds The room's image is called the background. A background
that is larger than the game's native resolution will automatically scroll
when the character moves around the room. Also, a background can have
up to 5 animated frames and AGS will cycle through them all, creating an
animated background.

Game Design with AGS

78

• Walkable Areas The areas of the screen where the character is allowed
to walk are called Walkable Areas.

• Walk-behinds Walk-behinds give the room a 3-D effect by allowing the
character to appear to walk behind areas of the room's background. This
is useful, for example, if you have a tree, a table, a wall, or any other
object that is part of the room background that characters should be able to
walk behind.

• Regions A player might decide to interact with the room's background.
Using regions, you can distinguish between different parts of the
background and have each part of the room react differently to player
interactions.

• Room Events You can respond to the various events that happen in a
room, like the first time a player enters a room, or walking off the edges of
the room.

• Room Edges Walking off the edge of the screen can trigger events to
happen, like changing to another room, for example. The Room Edges
define where the player must walk to for those events to occur.

• Lighting AGS gives you the illusion of lighting by setting the light level
of regions in each room. When a character is within a region, its
brightness is affected by the light level of that region.

• Scaling Things in your game can grow and shrink with distance by using
scaling. This is a feature of walkable areas.

• Transitions When your characters leave and enter rooms, it's nice to give
the player feedback of this happening by, instead of triggering a new room
as soon as the player crosses the room's edge, have the character continue
to walk off the edge of the screen before triggering the new room.

Chapter 4

Interacting with Your World

Our game is coming along quite nicely at this point. We have a main character
that is fully animated, and she can walk around and visit 4 different rooms. But
we're far from finished yet. After all, even though we've accomplished a lot, Foxy
still can't really do anything yet. All she can do is walk. There are several more
actions that the player can do, and we'll start to focus on them in this chapter in
the section about Hotspots. Also, Foxy should be able to pick up things to put in
her inventory and interact with objects in her environment (after all, this is an
adventure game!). Well don't worry; we'll cover that in this chapter as well when
we talk about Objects and Inventory Items.

Interaction
So far, we've had Foxy walk around each room by clicking the little mouse icon
(which looks like a stick figure) on different parts of the screen. But have you
tried right-clicking? We briefly mentioned this before, but let's try it again. Load
up the game and try it now. You'll notice that your mouse cursor changes from a
stick figure to an eyeball (Figure 4.1). If you right-click again, it will change to a
hand, and if you right-click yet again it will change to a person's head. If you
continue to right-click, it will simply cycle back through these four mouse
cursors. (We know, this is all basic stuff but not everyone read the first chapter.)
Each of these mouse cursors represents a different action that the player can take.
The stick figure, as we've seen, is used for walking; the eyeball is used for looking
around; the hand is for interacting with things; and the head is used to talk to
someone or something. When you left-click you are performing that action on
whatever you left-clicked on. Rocket science, right?

Game Design with AGS

80

Figure 4.1: The Eyeball Cursor

Notice, though, that none of the mouse modes does anything except the walk
mode. That's because we haven't told AGS to do anything with those modes yet!
That's all about to change.

Hotspots
Let's just say that we want Foxy to be able to look at the big tree next to the pond.
What we'd really like is for the game to say something witty and clever when the
player clicks the eyeball cursor on the tree, like, “That's a big tree next to the
pond.” (Figure 4.2)

Figure 4.2: Foxy Looks at the Tree

We'll do that using a hotspot. To get started, edit the Pond room and select
Hotspots from the Show this room's dropdown box. Since we don't have any
hotspots yet, all you see is the pond, but let's draw a hotspot on the tree. Select
hHotspot1 from the dropdown list of Hotspots under the Project Tree. Using the
drawing tools at the top of the window, outline the tree, and then flood fill the
area inside your outline. This should color the tree blue, as in Figure 4.3.

Interacting with Your World

81

Figure 4.3: A Hostspot on the Tree

Before we start to use the hotspot, let's rename it to something that makes a little
more sense than “hHotspot1.” Make sure that hHotspot1 is still selected, and
look in the Properties Window for an attribute called Name. Change the value of
that attribute from hHotspot1 to hTree (the “h” stands for “hotspot”). While
we're at it, let's go ahead and change the description of the tree to something
descriptive like, “The tree by the pond.” When you're done, the Properties
Window should look like Figure 4.4.

Figure 4.4: The Properties Window for Our First Hotspot

Game Design with AGS

82

Now we need to tell AGS to display our message whenever the player clicks the
eyeball mouse cursor on the tree. Bring up the Events for the hotspot by clicking
the lightning bolt icon in the Properties Window (Figure 4.5).

Figure 4.5: Events for the Tree Hotspot

Here we have all the events that can occur with a hotspot. There's one for each
mouse mode (Interact [Hand], Look at [Eye], Stands on [Walk], and Talk to
[Head]), as well as some other events that can occur, like when the mouse moves
over the hotspot, when the player uses an inventory item on the hotspot, and also
a couple of “Usermode” events which can be used if you to create your own
custom mouse modes (we'll go over each of these later).

At the moment we're interested in the eyeball cursor, so click on the event Look
at hotspot, and then click the ellipses button next to the event to create the
function in the room script. The function that AGS creates for you is called
hTree_Look . All that's left to do now is to add one simple line to that function:

 Display(“That's a big tree next to the pond.”);

That line causes AGS to display a message on the screen with the text “That's a
big tree next to the pond.”

Run the game and right-click to change to the eyeball cursor, then left-click on the
tree. If you did everything right, the message will appear just like in Figure 4.2
above. Cool!

Interacting with Your World

83

Objects

Objects are exactly what their name implies they are. They’re objects; things in
the game that can move. They can disappear and come back. They can move up
and down the screen. Or even side to side if that’s your fancy. A good example
of an object is a door, or a tree branch. Or maybe even a light switch.

Let’s add a door to the bathroom. Most people enjoy the ability to do their
business in private. In addition, most people like having huge garage-door-like
doors in their house that lead to the bathroom. Let’s do that now. Use your
favorite painting program to draw a door that fits into the opening to the
bathroom. Or, you can use the one we provided called BathroomDoor.bmp.
Let’s begin by creating a new folder under Sprites. Double-click on Sprites in
the Project Tree to open the sprites editor. Right-click on the Main folder on the
left and choose to Create a sub-folder and name it Objects. Of course, you don’t
have to do this, but it will keep all your sprites organized. Now open that folder
and import the door sprite from the file. You should know how to do this by now.
The final result is in Figure 4.6.

Figure 4.6: Importing the Bathroom Door

Great! Now let’s add that door as an object to our Main Hall. Edit the Main Hall
room and choose Objects from the Show this room’s drop down box. Now right-
click on the background and choose New object here. As you can see, that
created a new object in the room and made it look like a little blue cup (Figure
4.7).

Game Design with AGS

84

Figure 4.7: Our Little Blue Cup Object

The blue cup, which is AGS’s logo, is the default look of all objects. The blue
cup is nice, but we’d really like our object to look like a door, not a cup. There
are two ways to change the sprite of our object. The first method involves going
back to the sprite editor and getting the sprite number for the sprite we want to
use, and then plugging that number in to the Image property of the door object,
as in Figure 4.8. You can also choose the sprite another way, by clicking the
Image property, and then clicking the ellipses button next to it. This will bring
up a Sprite Chooser dialog, where you can browse to find the sprite for the door.
Whichever method you choose, the end result should cause your object to look
like a door.

While we’re changing the object’s properties, go ahead give the object a name, by
changing its Name property. We’re calling ours oDoor (the “o” stands for
“object”).

Interacting with Your World

85

Figure 4.8: Changing the Object's Image

You should see the blue cup change into the door. Use the mouse to drag the door
to its proper position. Ta da! We now have privacy. But how do we open this
door?

Figure 4.9: Our Bathroom Door

To open the door we need to create an event for when Foxy interacts with the
door. This is going to be much like the event created for the hotspot on the tree.
Click the lightning bolt to open the event in the Properties Pane and add a
function to the Interact object event. Now we want to tell the door to slide up
when Foxy interacts with it (Yes, we’re making a sliding door). For this function
we need to move the object up when it’s clicked on, and down when it’s clicked
on again. Look at the Properties Pane for the door and find the StartY value.

Game Design with AGS

86

Figure 4.10: See the StartY Value?

This is the y coordinate of the bottom left pixel of an object. We want to move
this pixel up and down as necessary.

The Move Function

As you can see from Figure 4.10, the StartY value for our door is 114. Moving
it up to about 55 should accomplish what we want, but feel free to play with the
value once you get the thing moving. So, to move this object up, we will use the
Move function. Put the following line of code into the oDoor_Interact
function that AGS created:

oDoor.Move(oDoor.X, 55, 3, eBlock, eAnywhere);

This function will keep the door’s x coordinate in the same spot and move the y
coordinate up to 55. The eBlock and eAnywhere are nothing new, but what
does that 3 do? Well that’s the speed of movement. Again, feel free to play with
that as needed. If you run the game now and use the hand mouse icon on the
bathroom door, you should see it move up.

Now we need a way to move the door back down to the ground when we click on
it again. We’re going to use the Move function again, but this time, instead of
moving to y coordinate 55, we’ll move the door back to its original y coordinate
of 114. But we need to tell AGS to toggle these two movements; that is, when the
player clicks on the door when it’s at y coordinate 114, move it up to 55, and
when the player clicks on the door when it’s at 55, move it down to 114.

So, our finished function should look like this:

Interacting with Your World

87

function oDoor_Interact()
{
 if (oDoor.Y == 114)
 {
 oDoor.Move(oDoor.X, 55, 3, eBlock, eAnywhere);
 }
 else
 {
 oDoor.Move(oDoor.X, 114, 3, eBlock, eAnywhere);
 }
}

First, we check to see where the door is. If it’s resting in the down position, we
move it to the up position. If it’s in the up position, we move it to the down
position. Go ahead and run the game now and click on the door using the hand
mouse icon. You should see it toggle between moving up and down with each
click.

Walk-behinds are for Objects, too!

I’m sure you’ve noticed something about the door. It just looks very weird
moving up and down the way it does (see Figure 4.11). It doesn’t make sense for
it to just hover up and down in front of the wall and the ceiling like that. Maybe,
just maybe, if we make it go behind the wall, then it would look a lot more
natural. Let’s do just that. For this exercise, we’re going to use our good friend
the walk-behind. Create a walk behind that looks like Figure 4.12.

Figure 4.11: That door should go behind the wall not in front of it!

Game Design with AGS

88

Figure 4.12: Walk-behind for the Bathroom Door

Set the baseline at the bottom of it. Run the game now and see how the door
looks. As you can see, characters aren’t the only things that are affected by walk-
behinds—objects in your game can use them, too. Neat huh?

Foxy is a ghost?

Run the game and tell Foxy to walk into the bathroom with the door closed. She
can walk right through the door! Either she’s a ghost or we’ve got more work to
do. Let’s prevent Foxy from going into the bathroom without opening the door
first.

Open the script editor for the Main Hall and find the function that gets called
when Foxy moves beyond the top edge (probably called room_LeaveTop).
Change that function to look like this:

function room_LeaveTop()
{
 if (oDoor.Y == 114)
 {
 cFoxyMonk.y = cFoxyMonk.y + 1;
 }
 else
 {
 cFoxyMonk.ChangeRoom(3, cFoxyMonk.x, 220);
 }
}

As you can see, we added a check to see if the door is down (i.e., the door’s y
coordinate is 114), and if it is, move Foxy back down one pixel and don’t change
her room. Moving down one pixel puts her back under the top edge of the room

Interacting with Your World

89

so that she can attempt to move past it again. Now the door has to be opened
before Foxy can go into the bathroom.

We’re almost done. There are only two small problems left. One problem is that
Foxy can open the door from anywhere in the room. Clicking the hand icon on it
will open the door even if Foxy is all the way on the other side of the room. That
just won’t do at all because (unlike the rest of our game) it’s just not realistic!
This is easy to fix. Change the function for interacting with the door
(oDoor_Interact) to first move Foxy to it before opening or closing it. All
we have to do is add one line to the function. Add the following line as the first
line in the function:

cFoxyMonk.Walk(oDoor.X + 20, Room.TopEdge, eBlock,

eAnywhere);

Before the door is moved, Foxy will walk to the door’s x position plus 20 pixels.
That will put her somewhere in the vicinity of the middle of the door. And, she’ll
walk to the top edge of the room. Remember that this is the edge at which she
will actually walk into the next room. So now when Foxy interacts with the door,
she will walk up to it, open it, and proceed into the bathroom. If you don’t want
her going into the bathroom after opening the door, then just add 1 to
Room.TopEdge and she won’t pass the edge and will just open the door and stand
there. But why open the door if you’re not going through.

And now for the final little problem: When Foxy tries to walk into the bathroom
with the door closed, she’ll stop but will appear to flicker there for a bit. This is
actually because she’s passing through the door first, then our room_LeaveTop
function is called which changes her y coordinate, throwing her back out. Let’s
fix this by splitting our walkable area into two walkable areas. We’ll put one in
the bathroom and one outside it and only activate the one inside the bathroom
when the door is opened.

Go back to editing the room and view its walkable areas. It should look
something like Figure 4.13.

Side Note: Here’s a question. When we move Foxy to the room’s top edge
before the door opens, shouldn’t this immediately change her to the bathroom,
without giving the door a chance to open first? Well, normally this would be the
case, but AGS treats room changes a little different than other functions. Any
function that causes the main character to change rooms (as our Walk function
does here) will be completed before the actual room change takes place. So, even
though it’s the Walk function that causes Foxy to change rooms, the rest of the
function will execute before the game actually moves her to the next room.

Game Design with AGS

90

Figure 4.13: The Main Hall Walkable Area

Remember how we added that extra lip that goes into the bathroom so that Foxy
will pass the room’s edge? Well that lip should be made into its own walkable
area. To do this, use the eraser to get rid of the lip. You’ll find the eraser by
choosing Walkable area ID 0 from the dropdown box between the Project Tree
and Properties Pane (Figure 4.14). Use the eraser on the lip and remove it. Now
choose Walkable area ID 2 from the dropdown to draw a second walkable area
and redraw the lip. It should end up looking like Figure 4.15.

Figure 4.14: Choosing the Eraser

Interacting with Your World

91

Figure 4.15: Adding the Second Walkable Area

The only thing we have to do now is turn our new area off when the door is closed
and on when it’s opened. We should do this in two places: whenever Foxy first
enters the room and whenever she interacts with the door. Put the following
block of code in the room_AfterFadeIn function:

if (oDoor.Y == 114)
{
 RemoveWalkableArea(2);
}
else
{
 RestoreWalkableArea(2);
}

What this says is, if the door is down, remove the walkable area we just created.
Now Foxy can’t go up there at all. If the door is up, then we restore the area so
Foxy can move into the bathroom.

The RemoveWalkableArea and RestoreWalkableArea functions should
also be placed in the oDoor_Interact function. Make that function look like
the following:

function oDoor_Interact()
{
 cFoxyMonk.Walk(oDoor.X + 20, Room.TopEdge, eBlock ,

eAnywhere);
 if (oDoor.Y == 114)
 {

Game Design with AGS

92

 oDoor.Move(oDoor.X, 55, 3, eBlock, eAnywhere);
 RestoreWalkableArea(2);
 }
 else
 {
 oDoor.Move(oDoor.X, 114, 3, eBlock, eAnywhere);
 RemoveWalkableArea(2);
 cFoxyMonk.PlaceOnWalkableArea();
 }
}

Notice we also added the function cFoxyMonk.PlaceOnWalkableArea .
This makes sure that Foxy is placed on walkable area 1 since we’re turning off
walkable area 2 by moving her to the closest position on walkable area 1.
Otherwise, Foxy might get stuck in a non-walkable area and not be able to move.

Inventory Items

Now we're really getting some interaction going. We can look at things, and we
can manipulate objects within the game. But, of course, an adventure game just
isn't an adventure game unless the player can pick things up and carry them
around, and that's where the inventory system comes in. Every adventure game
from King's Quest to Monkey Island uses an inventory system; after all, without
an inventory, how can you do really obscure things like in Monkey Island where
Guybrush used a wad of spit from Largo to make a voodoo doll? Adventure
Games Need Inventory Items.

By default, AGS uses a Sierra-style inventory system, where the player's
inventory is managed through a separate “inventory screen” which displays all the
items the player is currently carrying. Figure 4.16 shows an example of an
inventory screen from King's Quest VI. (King's Quest VI wasn't written using
AGS, of course, but it shows the type of Inventory Screen you get by default with
AGS.) Just like about everything else in AGS, the inventory system you use is
entirely configurable and you can use any other style of inventory system you
wish. For now, though, we'll use this Sierra-style one.

Interacting with Your World

93

Figure 4.16: Sample Inventory Screen

In the Inventory Screen, the player is presented with the inventory items that he or
she has collected throughout the game. Notice that each inventory item is
represented by its own sprite image. This sprite image is usually different than
the sprite that was used when the character picked up the item. For example, in
the image above, the sprite for the black feather would be much too large if it was
actually placed in a room in the game (compare it to the size of the fawn in the
foreground to see what we mean). So, each inventory item that is in your game
will most likely need two sprites to represent it; one for the object when it's in the
game, and one for the inventory item that appears on the inventory screen once
the player picks it up.

Enough talk about that. Let's create an inventory item!

We're going to put a stick on the ground in front of the big tree and allow Foxy to
pick up the stick to use later in the game. First thing we need is a sprite of the
stick so that we can import it into AGS. Once again, we've done the hard work
for you and provided you with a stick sprite you can use.

Double-click on Sprites in the Project Tree. Let's create a new folder again just
like we did for the Door sprite in the last section, but this time let's call it
Inventory Items. So, right-click on the Main folder and select Create sub-folder
and name the new folder Inventory Items. Right-click on the right pane and select
Quick import sprites from the context menu. Find the file LittleStick.bmp and
open it. This will import the sprite into AGS. (Using the Quick Import option is
quicker and easier than the way we imported sprites before, but doing it this way
doesn't let us import multiple sprites from the same image as we did earlier.)

Great! Now we have our sprite imported that will represent the stick. This is the
stick that will be placed near the tree. Now let's import the sprite for that same
stick that will be used in the inventory screen. Right-click again in the right pane
and select Quick import sprites but this time, select InventoryStick.bmp.

Game Design with AGS

94

That's our sprites taken care of. The next step is to create the inventory item. In
the Project Tree, expand Inventory Items, where you'll see two items listed:
iKey and iPoster . These are just examples that are built in to the default
game, so you can delete them if you want by right-clicking them and selecting
Delete this item (just say Yes to the confirmation dialog that pops up; deleting
these items won't be a problem for us). Create a new inventory item by right-
clicking Inventory Items and selecting New Inventory Item. This will create a
new inventory item called iInvItem1 . That's a really dumb name, so let's
rename it to something more descriptive like iStick . Double-click the
inventory item, and change its Name attribute to iStick . While you're
changing attributes, we need to set the image of the stick to the sprite we just
imported. Click on the Image property, then click the ellipses button next to it.
This will bring up the Sprites browser, where you can browse to the image of the
inventory stick, select it, and click Use this sprite. (Make sure you choose the
big stick and not the small one, since we're creating the inventory item and not the
object.) Each inventory item has an associated Mouse Cursor Image, which is the
image used for the mouse cursor when the player selects the inventory item. We
need to set the sprite of the mouse cursor image, so just change this property
(called CursorImage) to the same number as the Image property.

Now comes the part where we will add the stick in our game under the tree. This
is just like when you added the door to the Main Hall earlier. Edit the Pond room,
and select Objects from the Show this room's dropdown. Right-click in the
room somewhere near the base of the tree, and select New object here. Change
the Image attribute of the new object to the sprite for the little stick, change the
Name to oStick , and change the Description to “Stick”. Once you've done that,
your room should look something like Figure 4.17.

Interacting with Your World

95

Figure 4.17: Our Stick Under the Tree

Since we want the player to be able to pick up the stick, we need to create an
event for the stick object. With the stick selected, click the lightning bolt icon to
bring up the events, and, just like with the door, select the Interact object and
click the ellipses icon next to it.

This brings up the room script and creates a function for us called
oStick_Interact . Put the following code in the function.

cFoxyMonk.Walk(oStick.X, oStick.Y, eBlock,

eWalkableAreas);
oStick.Visible = false;
cFoxyMonk.AddInventory(iStick);
Display("You stick the stick in your pocket and hop e

it's not a sticky stick that will stick you.");

Let's talk about what each line does:

Side Note: So why didn't we use the Pick up object event for the stick, since we're
wanting to pick it up? Well, the Pick up event is used when the player uses the
Pick Up mode of the mouse on the object. By default, there is no Pick Up mouse
mode enabled, so this event really doesn't do anything. Some adventure games
use different mouse modes for the different actions like Pick Up, Open, Move,
Operate, etc., and you can do this too if you want (we'll talk about adding more
mouse modes later), but in our game all of those actions are represented with the
Interact mouse mode.

Game Design with AGS

96

cFoxyMonk.Walk(oStick.X, oStick.Y, eBlock,
eWalkableAreas);

The first statement should be all-too-familiar by now. It causes Foxy to walk over
to where the stick is.

oStick.Visible = false;

This line sets the Visible property of the oStick object to false , which
(surprise!) makes the stick invisible. Once an object is invisible, the player can no
longer interact with it at all, so this effectively turns the object off.

cFoxyMonk.AddInventory(iStick);

This is where the item is added to the player's inventory. Notice that we used
iStick here, and not oStick . The iStick is the inventory item, whereas the
oStick is the object in the room. (See? We told you the letters at the beginning
of those names would be helpful later on!)

And finally, we display a message to the user to tell them they picked up the stick:

Display("You stick the stick in your pocket and hop e

it's not a sticky stick that will stick you.");

That's it. Run the game now and click the hand icon on the stick. You should see
Foxy walk over, the stick will disappear, and our message will be displayed on the
screen. Click to dismiss the message and then look at your inventory. You can
do this either by pressing the Tab key, or by moving your mouse to the top of the
screen and clicking the suitcase icon.) You should see the stick in your inventory
now! Yay! Mission accomplished!

Figure 4.18: Our First Inventory Item

Interacting with Your World

97

Using Inventory Items
That was so awesome. Let's add another inventory item now, but this time we'll
make Foxy work a little harder to get it. If there was an apple way up high in the
tree, maybe Foxy could use her newly-acquired stick to throw at the apple and
knock it down. (Yeah, we know, Foxy has wings and could just fly up there to
get an apple, but let's forget about that and just play along.)

This would accomplish a couple of things. First, it would let us get more practice
adding inventory items. But more importantly, requiring that Foxy uses the stick
on the apple in the tree lets us see how to use inventory items on other objects in
the game. We'll have to figure out a way to make something happen when the
stick is used on the apple... hmm...

Before we get too far ahead of ourselves, we need to first put the apple in the tree
and create an inventory item for it. Go to your game's Sprites and import two
new sprites: LittleApple.bmp and InventoryAppleWithWorm.bmp. Just like with
the stick before, these sprites will be used to represent the apple in the game and
in the inventory, respectively. Ewww, the apple looks like it has a worm! That's
ok, we'll let Foxy get the worm out as another exercise later.

Putting the apple in the tree is very similar to when we put the stick on the
ground, except for one very important difference. Open the Pond room and select
Objects from the Show this room's dropdown. Right-click somewhere in the
tree and select New object here from the context menu. Find the Image
attribute in the new object's Properties Window, and change this to the sprite of
the Little Apple you just imported (you can click the ellipses button to browse for
the right sprite, just make sure to select the little apple and not the big one). Now,
change the Description to “Apple”, and the Name to oApple . When you're
done, your Pond should look something like Figure 4.19.

Game Design with AGS

98

Figure 4.19: The Apple of My Tree

Here's the part that's different from when we added the stick. If you run your
game you'll see a problem. Actually, you won't see a problem, because you won't
see the apple at all! What happened? Where'd the apple go? The apple really is
there, but it's hidden by the walk-behind area on the tree we created back in
Chapter 3. Let's think about what's happening here. There's a walk-behind area
on our tree, which we put there so that Foxy could walk behind the tree. The
problem is, objects obey walk-behind areas as well, and so the apple we put in the
tree is being drawn behind the tree, since it is above the baseline of the tree's
walk-behind area. Well great, how do we fix that? We need the apple to ignore
the tree's walk-behind area so it's always drawn in front of the tree. It just so
happens that AGS allows you to do that relatively easily. You might think there's
an attribute on the apple object called IgnoreWalkBehinds or something like
that, but there's not. There is, however, something that will work just as well.
Find the attribute BaselineOverridden in the apple's Properties Window.
This value is set to False by default, and that means that the object's Baseline is
set to the very bottom of the object. This is similar to how the character's baseline
is at the very bottom of the character, like we mentioned when we create the
walk-behind way back in Chapter 3. Change the BaselineOverridden value
from True . You should see a new attribute appear, called Baseline . This lets
us set a new y location for the object's baseline. If we set the baseline to 200 ,
which is the very bottom of the screen, this will effectively create a situation such
that the apple's baseline is always below the walk-behind's baseline, causing the
apple to be drawn in front of the tree. After you've changed the apple's Baseline
attribute, run the game again and you'll be able to see the apple up in the tree.

Interacting with Your World

99

Eventually, Foxy will be able to pick up the apple, so we'll need an inventory item
for it also. Right-click on Inventory Items and select New Inventory Item.
Under the Properties, change the Description to “Apple” and change the
Name to iApple (please don't sue us, Steve!). Browse for the Image and this
time, select the big apple with the worm in it. That's all there is to that, so let's go
back to the Pond room and put all this together!

When Foxy uses the stick on the apple in the tree we want the apple to fall out of
the tree onto the ground. When the apple is on the ground, Foxy should be able to
interact with the apple to pick it up. We have to be sure that we don't let Foxy
pick up the apple while it's still in the tree.

Click on the apple in the tree, and create a new Event for Use Inventory on
object. This should create a function for you in the room script called
oApple_UseInv . Edit this function so it looks like the function below, then
we'll discuss it.

function oApple_UseInv()
{
 if (cFoxyMonk.ActiveInventory == iStick)
 {
 if (Game.DoOnceOnly("StickIsInTree") == true)
 {
 oApple.Move(oApple.X, 170, 4, eBlock,

eAnywhere);
 oApple.Baseline = 0;
 Display("Good shot! The apple falls out of th e

tree and lands on the ground with a thud.");
 }
 }
}

The oApple_UseInv function will be called by AGS any time the player uses
an inventory item on the apple object. Since the player might have several
inventory items throughout the game, we have to make sure that it was the stick
that was used and not some other item the player might have. We use the
ActiveInventory property of the character to do this:

if (cFoxyMonk.ActiveInventory == iStick)

Here, we're checking that the active inventory item
(cFoxyMonk.ActiveInventory) is the stick (iStick). If it is, the code
inside the if block's curly braces will run.

Game Design with AGS

100

The first instruction in that if block is another if statement:

if (Game.DoOnceOnly("StickIsInTree") == true)

The function Game.DoOnceOnly does just what it sounds like it might do: it
ensures that something happens only one time. The function will return a true
value the first time AGS encounters this statement and a false value every time
after that. The string that we passed as a parameter to the function,
StickIsInTree , can be anything you want, and this is how AGS knows if this
particular DoOnceOnly statement has been done before. For example, suppose
you have two events in your game and you want each event to happen only once.
You can use DoOnceOnly for each event, but each one needs to have a different
string passed to it.

The next statement causes the apple to fall down to the ground.

oApple.Move(oApple.X, 170, 4, eBlock, eAnywhere);

We're using the Move function here, but it's similar to the Walk function we've
seen before. Both functions are used to move things around on the screen, but
objects can't walk, so you can only use the Move function with objects.
Characters, however, can move and walk, so both functions are available with
them. While Walk causes the character to animate, Move doesn't animate at all.

We changed the apple's Baseline property earlier so that the apple would
always appear in front of the tree's walk-behind area. Well, now that the apple is
on the ground, that Baseline property will also make it always appear on top of
Foxy whenever she walks over to it. That's not what we want! So, just after we
make the apple fall on the ground, let's set the Baseline property of the apple
back to 0, which effectively turns the Baseline back to its default behavior.

oApple.Baseline = 0;

Finally, we display a message to the player to let them know what just happened.

Display("Good shot! The apple falls out of the tree

and lands on the ground with a thud.");

To try this out, run the game and pick up the stick by interacting with it. Then,
open the inventory by rolling the mouse all the way up the screen and clicking on
the suitcase icon. You should see the stick there. Click on the stick and your
mouse cursor will change into it. Then click OK . Now click the stick on the
apple to use it. The apple should fall from the tree.

Interacting with Your World

101

That was the hard part; now's the easy part. If the player interacts with the apple
while it's on the ground, we want Foxy to walk over to it and pick it up. Create a
new Event for the apple object for Interact object. AGS will create a function
for you called oApple_Interact . Edit it so it looks like this:

function oApple_Interact()
{
 if (oApple.Y == 170)
 {
 cFoxyMonk.Walk(oApple.X, oApple.Y, eBlock,

eWalkableAreas);
 oApple.Visible = false;
 cFoxyMonk.AddInventory(iApple);
 Display("Foxy puts the apple away. Maybe she ca n

eat it as a snack later.");
 }
 else
 {
 Display("The apple is too high for Foxy to reac h

it!");
 }
}

This looks very similar to when we picked up the stick earlier. The difference
here is, we added that initial if statement to make sure that the apple is on the
ground first before Foxy walks over to it (if the apple's Y location is 170, we
know it's on the ground because that’s what we set the Y location to in the
oApple_UseInv function). If it isn't on the ground, then we display the
message telling the player that the apple is too high for Foxy to reach.

HOMEWORK : Add code to this function so that you see the stick fly from
Foxy's position to hit the apple before it falls. Don't forget to make Foxy lose the
stick from the inventory when she throws it. (Hint: use
cFoxyMonk.LoseInventory(iStick) .) Also, have Foxy turn to face the
apple before she throws the stick at it. (Hint: use
cFoxyMonk.FaceObject(oApple) .)

Using Inventory Items on Each Other
Let's get Foxy to take the worm out of the apple now. I don't think Foxy wants to
actually touch the worm with her hand, so let's have her dig the worm out with the
stick. This will be a good exercise on how to use one inventory item on another.
We'll need a few more sprites for this. We're going to need a sprite of the apple
without a worm in it, and a sprite of a stick with a worm on it. That way the
worm can crawl out of the apple and onto the stick. Import the files

Game Design with AGS

102

InventoryApple.bmp and InventoryStickWithWorm.bmp and create two new
inventory items using those sprites called iAppleNoWorm and
iStickWithWorm . Now it's just a matter of adding some events. Select
iApple from the Inventory Items section of the Project Tree and click the
Events lightning bolt. You should see an event named Use inventory item on
this item. Create an event function for that event (it will be called
iApple_UseInv) and make it look like this:

function iApple_UseInv()
{
 if(cFoxyMonk.ActiveInventory == iStick)
 {
 cFoxyMonk.LoseInventory(iStick);
 cFoxyMonk.LoseInventory(iApple);
 cFoxyMonk.AddInventory(iStickWithWorm);
 cFoxyMonk.AddInventory(iAppleNoWorm);
 Display("Oh goody! You got the worm out of the

apple and onto the stick.");
 }
}

Basically what we did is make Foxy lose the stick and the apple with the worm in
it, then we gave her the stick with the worm and the apple without the worm.
Then we displayed a message to the user to tell her what just happened. The
inventory window should now show the new items.

Non-Player Characters (NPC)
Even though there are games out there that only have one character, I don’t think
our game would be complete without at least one more character. We figure that
since we have a pond, then we should have a duck. Therefore, we created a duck
name Dork. Dork the Duck is a happy sort of duck that likes to play around the
pond, splashing in the water, and happily waddling his way around the tree.

The first part of introducing a new character is of course drawing the character’s
sprites. We’ve already done that and put the sprites in a file called Dork.bmp. If
you look at those sprites you’ll notice that Dork has a swimming view. Also,
notice that he has walk and swim right views, but no walk or swim left views.

Even though you’re now an expert at importing sprites and creating views, let’s
import Dork and create his views together. Start by opening the Sprites editor and
creating a new folder for Dork. Choose to import new sprites from a file and
import the sprites any way you wish. When you’ve finished, you should have 24
sprites in all. They should be walk right, swim right, walk up, walk down, swim
up, and swim down.

Interacting with Your World

103

Figure 4.20: The Sprites of Dork

We need to create two views for Dork: one of him walking and one of him
swimming. Let’s start with the walking view. Create a new view and call it
vDNormal . Select the 4 walk right sprites for Dork, right-click, and choose to
assign them to a view. Put in your new view number (probably 4), choose Loop 2
(right), and click OK . Remember how we don’t have a walk left view? Here’s
how to make it. Select the SAME 4 walk right sprites, right-click, and choose to
assign them to a view. Put in view 4 again, choose Loop 1 (left), and check the
box at the bottom that says: Set all new frames as Flipped. Click OK and check
your view. Neat huh? This way our walk right and walk left will look the same.
Now go ahead and create the walk up and walk down loops on your own.

For the swimming view, create a new view called vDSwim. Add the loops just as
above but choosing the swimming sprites. Be sure to flip the walk left loop.

Now that we have the views for Dork, we need to actually create the character.
Right-click the Characters node in the Project Tree and choose New Character.
Make sure the character is selected and change the ScriptName property to
cDork and the RealName property to Dork . Set the StartingRoom
property to 1 to make him show up at the pond. Set the NormalView property
to 4 (or whatever your normal Dork view was) and set the StartX and StartY
to 250 and 60 to put him near the pond when the game starts but not in the pond.

Game Design with AGS

104

Set the MovementSpeed property to 6 to match that of Foxy’s. Run the game
and check him out. He won’t do anything, but it’ll be fun to see him standing
there.

Figure 4.21: Hey Look! Dork is Standing There!

When you’re done staring in awe at your new character, close the game and go on
with this lesson. We know exactly what you want to do now: you want to see that
duck swim! But why would he swim? Let’s take this one step at a time. First,
let’s make Dork walk over to the middle of the pond when Foxy interacts with
him. Double-click Dork to edit him and click on the lightning bolt to bring up his
events. Notice that characters have the same kinds of events as objects and
hotspots do. Create a new event for Interact character , which will create
a function named cDork_Interact in the script. In this function tell Dork to
walk to position (334, 95), which is the middle of the island. Remember to tell
him to walk anywhere because there is no walkable area over the pond. You’ll
need to make Foxy walk over in that direction too, otherwise Dork will walk off
the screen and you won’t see him, so we’ll make Foxy walk up to him and he run
away from her when she gets close, and we only want that to happen if Dork is
not already on the island. The function should have the following:

if(cDork.x != 334)
{
 cFoxyMonk.Walk(230, 60, eBlock, eWalkableAreas) ;
 cDork.Walk(334, 95, eNoBlock, eAnywhere);
}

First we check Dork's x coordinate and if it's not on the island, we tell Foxy to
walk over to Dork. We also tell her to make sure to only walk on walkable areas.
The second line of the if block tells Dork to run away from Foxy and to ignore
walkable areas while NOT blocking. The reason we don’t want him to block will

Interacting with Your World

105

become apparent in a few minutes. Run the game, use the hand icon on Dork, and
watch the fun.

Animations
Let’s make him swim now. This is what we’ve all been waiting for. In order to
make Dork swim, we have to change his view to the swim view when he’s on
water, and the best way to do that is to create a region.

Open the editor for room one and view the room’s regions. You’ll notice we
already created a region in front of the shack’s door, so we’ll need to change the
region ID to 2. Find that in the dropdown box between the Project Tree and
Properties Pane (Figure 4.22). Once you choose Region ID 2, use the pen to trace
all around the pond enclosing all the water. Be sure to leave out the island
though. Then, use the flood tool to fill in the water. When finished, it should
look like Figure 4.23.

Figure 4.22: Choosing Region 2

Figure 4.23: Region 2 is the Pond

Repeatedly Execute

Side Note: the function is created in the global script and not the room script.
This is because character interactions can happen in any room.

Game Design with AGS

106

If Dork was the main character then at this point we would add two event
handlers for this region, one for walking onto the region and one for walking off
of it. We would change the view to the swimming view when he walks onto the
region and back to normal when he walks off of it. But, since these events are
only called when the main character walks onto and off of the region, and since
Dork is not the main character, we have to do something special. There is an
event in every room called Repeatedly Execute . This event fires every
game cycle, which equates to 40 times per second, or once every 25 milliseconds.
So, anything that we put in this event will happen 40 times every second that the
room is on the screen (See side note). We need to add some code to this function
that constantly checks where Dork is, and change his view accordingly.

Choose to show this room’s Nothing and then click the lightning bolt to bring up
the room’s events. You’ve done this before when you added the after fade in and
leave right/leave left events in other rooms. You should see an event called
Repeatedly execute . Add a handler to this event by clicking the ellipses.
This will create a function called room_RepExec . Edit the function to make it
looks as follows:

function room_RepExec()
{
 if(Region.GetAtRoomXY(cDork.x, cDork.y) ==

region[2])
 {
 if(cDork.View != VDSWIM)
 cDork.ChangeView(VDSWIM);
 }
 else if(cDork.View != VDNORMAL)
 {
 cDork.ChangeView(4);
 }
}

Side Note: Remember the eBlock parameter we've been using for various
function calls? Anytime a function runs with eBlock, it's called a blocking
function. Script instructions, including those in the Repeatedly Execute event,
will not fire while a blocking function is running. There is a special Repeatedly
Execute event that does get called even through blocking routines, called
repeatedly_execute_always. If you put a function with this name in your room
script (or in the global script), it will get called even when a blocking function is
running.

Interacting with Your World

107

This function consists of two if blocks. The first block checks Dork's position in
the room to see if he's in the pond region. The function
Region.GetAtRoomXY takes an x and a y and gives you the region number
that the (x,y) coordinates is in. If the coordinates are not in any region, then you'll
get a zero back. So we compare the return from that function to see if it equals
region 2, which is our pond region. If so, we check to see if Dork's view is
already the swim view and, if not, change it to the swim view. So now Dork will
have the swim view activated whenever he's in the pond. Notice that we used
VDSWIM instead of the actual number of the view. We could have used the
number 5, which is our swim view, but this is more readable. AGS will always
create an all-caps version of the view names that you create to make it easier
to refer to them in scripts.

The second if block in the function is actually an else/if block. This will
only happen if the first block is false and Dork's view is not the normal view
(i.e. it's the swimming view). In that case, we change the view back to normal.
Notice this time we used the number so you can see that they really are
interchangeable. One thing to note: We couldn't have written the function like
this:

function room_RepExec()
{
 if(Region.GetAtRoomXY(cDork.x, cDork.y) == region [2])
 {
 cDork.ChangeView(VDSWIM);
 }
 else
 {
 cDork.ChangeView(VDNORMAL);
 }
}

This way, the view is always changed. We don't want to do this because of a
couple of reasons: first, it's not very efficient to change Dork's view 40 times per
second even when it doesn't need to be changed; and second, every time Dork's
view is changed, his position changes as well, which actually has a peculiar side
effect of making him walk really fast (try it out for yourself). Oh, and now for the
reason we didn't let Dork block while moving: Since the Repeatedly Execute
event doesn't fire when a blocking function is running, this would mean that the
view would not change. Try that out too and see for yourself.

More Animation
Now let's do a bit of animating with Foxy. Earlier in the chapter, we gave you a
homework assignment to show the stick fly out of Foxy's hands and hit the apple.
We're going to do that here and add a little bit more pizzazz to it. Foxy is going

Game Design with AGS

108

to first walk to a good position to better see the apple and turn to face the apple.
Then you'll see her hand go up and throw the stick at the apple.

To start this, we'll need to create a whole new view of Foxy throwing the stick.
There's a sprites file called FoxyThrowingAnimation.bmp that contains the proper
sprites. Import those sprites into the FoxyMonk folder of the Sprites editor (or
create a new folder if you wish). You should now have 6 new sprites of Foxy
(We actually don't need all 6 here, so just use the first 4. The other two are there
for you to play with if you want to extend the animation). Create a new view for
Foxy called vFMThrow using the new sprites. We'll just need one loop here so it
will be loop zero by default. That's it for the easy part. The rest is the code in the
function. Find the oApple_UseInv function in the Pond room's script and
change it to the following: (The comments in the code should explain what's
going on.)

function oApple_UseInv()
{
 if (cFoxyMonk.ActiveInventory == iStick)
 {
 if (Game.DoOnceOnly("StickIsInTree") == true)
 {
 // Have Foxy walk to a prime throwing positio n
 cFoxyMonk.Walk(116, 164, eBlock,

eWalkableAreas);

 // Turn Foxy to face the apple
 cFoxyMonk.FaceObject(oApple);

 // Since she's going to throw the stick, it

needs to disappear from her inventory.
 cFoxyMonk.LoseInventory(iStick);

 // Change her view to the new throwing view a nd

lock it
 cFoxyMonk.LockView(VFMTHROW);
 // Animate the new view
 cFoxyMonk.Animate(0, 5, eOnce, eBlock,

eForwards);
 // Unlock the view
 cFoxyMonk.UnlockView();
 // Lock frame 2 of the view so her arm stays up

in throwing position
 cFoxyMonk.LockViewFrame(VFMTHROW, 0, 2);

Interacting with Your World

109

 // Set the x and y location of the stick obje ct
to be wherever Foxy is, and then make it visible.

 oStick.X = cFoxyMonk.x;
 oStick.Y = cFoxyMonk.y - 10;
 oStick.Visible = true;

 // Override the baseline of the stick so it

doesn't appear behind the tree.
 oStick.Baseline = 200;

 // Move the stick to where the apple is.
 oStick.Move(oApple.X, oApple.Y, 6, eBlock,

eAnywhere);

 // Now move the stick down to the ground.

Notice the use of eNoBlock here, since we want
the apple to fall at the same time.

 oStick.Move(oApple.X, 160, 5, eNoBlock,
eAnywhere);

 oApple.Move(oApple.X, 170, 4, eBlock,
eAnywhere);

 // Reset the baselines for both the apple and

the stick back to the default.
 oApple.Baseline = 0;
 oStick.Baseline = 0;

 // Unlock the view
 cFoxyMonk.UnlockView();

 Display("Good shot! The apple falls out of th e

tree and lands on the ground with a thud.");
 }
 }
}

The things to note here are the view locking and unlocking functions. Locking a
view will keep it from changing until you call the unlock function. This way, if
you change a view and then ask a character to walk, the walking view will not
come back unless you unlock the view first. Always remember that for every
lock view call you need an unlock view call: NO EXCEPTIONS.

cFoxyMonk.LockView(VFMTHROW);
cFoxyMonk.Animate(0, 5, eOnce, eBlock, eForwards);
cFoxyMonk.UnlockView();

Game Design with AGS

110

cFoxyMonk.LockViewFrame(VFMTHROW, 0, 2);

The code snippet above demonstrates this. Here we lock Foxy's view to the
throwing view and animate. The Animate function says to animate using loop 0
with a delay of 5 (game cycles). The eOnce parameter says to do the animation
only one time. We want to block while animating and we want to animate
forward. After that we unlock the view then we lock the view again using only
one frame with the LockViewFrame function. This will hold the view at frame
2, which is the frame of Foxy's arm being in the up, or extended, position. We
keep the lock while the stick flies and the apple falls, then we unlock her view
with the UnlockView function so that she can go back to her normal view.

Summary
An adventure game becomes a lot more enjoyable and engrossing when it has
some interaction. Here are some of the ways a player can interact with your
game:

• Objects Objects are things in your game that are moveable, as opposed to
items that are part of a room's background. Objects have their own
attributes and events and can be manipulated through the game's script
files.

• Hotspots Items that the player can interact with that are not moveable and
are part of the room's background are called Hotspots. These behave
similarly to objects, but objects are more versatile.

• Inventory Items We discussed how to give your character inventory
items, and how they are used in conjunction with objects to let the player
interact with them on the screen.

• NPCs Characters that are not controlled by the player are called Non-
player Characters, or NPCs. All of the actions that an NPC does are
controlled through the game script. In this chapter we created an NPC
named Dork the Duck that Foxy could interact with.

• Custom Animations If something in your game should animate, you
have two options: either use the built-in views that are associated with
every character (Normal View, Speech View, Idle View, etc.), or, if these
don't suit your needs, you can create custom animations.

Chapter 5

Sounds and Music (Make Some Noise!)

We know what you're thinking: our game is great so far, but what about sounds
and music? (Or if you weren't thinking that then you are now, because we're Jedi
and we make you think what we want you to think.) Sounds and music are a very
important part of any game, and AGS makes it simple to add them to your game.

In this chapter, we'll take a look at the different kinds of audio you can use in your
game. We'll show you how you can use standard sound effects when things
happen in your game. But AGS offers more than just that. You can use ambient
sounds like crickets chirping in the background, room music, and you can even
give a voice to your characters and have them speak their lines.

Sound effects
Creating sound effects is one of those things that's a lot of fun to do, but you'll
quickly realize that you can easily get carried away with making a sound effect
for every action in your game. That's definitely not a bad thing necessarily, but
having too many sound effects—or, I should say, having too many obnoxious
sound effects—can drive your player bonkers, so be careful with them. We're
only going to put in a couple of sound effects into our game, just to show you an
example of the different types of sound effects that AGS supports.

AGS supports several file formats when it comes to audio files. All the major
sound formats are supported: OGG, MP3*, WAV, and VOC. To use sounds in
your game, you have to name your sound files a specific way for AGS to be able
to find them. First, all sound files must be in the Sound folder under your game's
main folder (e.g., C:\Documents and Settings\User\My Documents\My First
Game\Sound). Second, each sound file must be called SoundX.zzz, where X is a
number, and zzz is the file extension* that corresponds to the format of the sound
file (e.g., ogg, mp3, wav, voc). So, for example, if my game has 5 sounds—a wav
file, two ogg files, and two voc files—the filenames would be: Sound1.wav,
Sound2.ogg, Sound3.ogg, Sound4.voc, and Sound5.voc.

Game Design with AGS

112

Footsteps – no more sneaking up on people
I've got an idea. It would be nice if the player could hear Foxy's footsteps when
she walks around. AGS makes this really easy to do, because it lets you assign a
sound effect to any frame of a view. In Foxy's case, we want to assign two
footstep sounds to two different frames of her walking view. Here's how to do
that.

Once again we've done the hard work for you and created the files you'll need.
Look for the files called Sound1.wav and Sound2.wav and copy them to your
game's Sound folder (This is the Windows folder that your game is in and not a
folder in AGS itself). Next, open Foxy's normal view by expanding Views in the
Project Tree, and double-clicking on vFMNormal . Each loop of this view
contains three frames. What we're going to do is assign a sound to two of the
three frames in each loop, and AGS will play that sound when it displays that
frame of animation in the game. Click on the second frame of loop 0. If you look
at the Properties window, you'll see a property called Sound (Figure 5.1).
Change this from 0 to 1, which is the number of the sound that represents the first

Side Note: MP3 is supported, but there are licensing considerations to consider if
you use MP3 sounds in your game. If you plan to release your game
commercially you will need to obtain an MP3 license, which you can get from
Faunhofer and Thomson Multimedia, the owners of the MP3 decoding patent.
There is a flat fee to obtain a license, but you should check out the MP3 licensing
website at http://www.mp3licensing.com/royalty/games. To avoid the licensing
issue entirely, the easiest solution is to go to the downloads page of AGS, scroll to
the bottom of the page, and download the “Windows engine without MP3
support.” This will let you make games that don't use MP3 and you can use OGG
instead. OGG is a digital audio format similar to MP3 but without the licensing
restrictions (plus, OGG supports better compression and higher quality).

Side Note Two: Windows hides file extensions by default. You may need to set
your properties to show file extensions. Look online if you don't know how
because we don't want to waste all this space teaching you something that you can
just as easily find online by using Google. I mean, after all, what's the point of
explaining something here in the book that's documented online in about a
gazillion places? That would not only waste your time to have to read it, but it
would also waste our time by having to type it out. Especially when this book is
about AGS and not about Windows. Do you see our point here? Should we also
go into how to disable the display of file extensions in Linux and Mac as well?
Well, come to think of it, AGS doesn't even run on these platforms so that would
be an even BIGGER waste of time and space. So you can see why we didn't want
to waste the time and space to explain a simple concept like showing or hiding
file extensions.

Sounds and Music (Make Some Noise!)

113

footstep (Sound1.wav). Now click on the third frame of loop 0, and change its
Sound property from 0 to 2, to play Sound2.wav. Repeat this for the second and
third frames of each of the other three loops in this view.

Now run the game! As Foxy walks around you should hear her footsteps. (If you
don't hear anything, you might need to turn your volume up; the footstep sounds
we created are fairly quiet—remember, we don't want to totally annoy our
player!)

Figure 5.1: Properties for the Second Frame of Loop 0

HOMEWORK:
Create splish splash sounds for Dork and add them to his swimming view.

Ambient Sounds
Most of the time you won't need ambient sounds, but AGS provides the
possibility just in case you want to use it. Ambient sounds are simply sounds that
can be heard in the background, like crickets chirping, water running, etc.

To play ambient sounds, you have to use the script function
PlayAmbientSound . This function takes 5 parameters: channel , sound ,
volume , x , and y .

Game Design with AGS

114

• Channel is the sound channel to play the ambient sound through. AGS
supports 8 sound channels, which are numbered from 0 to 7. Basically you
can think of a sound channel as a tunnel which carries one sound at a time.
So, if you have 2 sounds that you want to play at the same time, you have to
play them through 2 different sound channels. So, with 8 channels, AGS
allows you to play up to 8 sounds at the same time. Just as a convention,
ambient sounds typically use channel 1, although you are free to use whatever
sound channel you want.

• Sound is the sound number you wish to play.
• Volume is a number from 1 to 255, and represents the volume of your

ambient sound. The higher the number, the louder the sound will be played.
• X and Y are the coordinates of the source of the sound. These parameters let

you use ambient sounds that appear to be emanating from a certain spot in
your game. If a sound is coming from a waterfall on the right side of your
screen, for example, you can specify the x and y coordinates of the sound to
match the location of the waterfall and the sound will get louder as the player
approaches the waterfall and quieter as the player walks away from it. This
gives the illusion of a location to the sound. If you don't want this effect, you
can simply use 0 for both x and y and the sound will be played at the same
volume throughout the room.

Background Music
Background music can give a nice ambiance to any room. Just like in the movies,
proper background music can convey different feelings and change a player's
mood. Let's add some background music to the long, dark, hall to make it seem a
bit scary. Find the file name music1.mid and copy it to you game's Music folder.
Just like with sounds, the music files need to be named music1.xxx, music2.xxx,
etc. Edit the Longroom and look for the property named
PlayMusicOnRoomLoad . Change this to 1. Run the game, go into that room,
and be afraid...

Did you try leaving the room? If you do, you'll notice that the music doesn't stop.
That room property starts music but it will not stop it. This is useful if you want
the same music to play throughout your game, regardless of the room the player is
in. We want the creepy music we selected to play only in the Longroom,
however. To stop the music, you'll need to use the StopMusic() function
somewhere. A good place for this would be the room_LeaveLeft function of
the Longroom. You also don't have to use the room property to start the music.
In fact, if you're going to start the music when the character enters a room and
stop it when the character leaves, then it might make more sense to do it all in
scripting instead of using the room properties. There are numerous functions to
manipulate music.

Sounds and Music (Make Some Noise!)

115

Go back and change the PlayMusicOnRoomLoad property to zero and let's
start the music with scripting. Go to the Longroom's script and find the
room_AfterFadeIn function. Add the following 2 lines to the top of the
function:

SetMusicVolume(-2);
PlayMusic(1);

The first line will set the volume down a bit. This function will take a number
between -3 and 3. -3 is the quietest, 0 is normal volume, and 3 is loudest. The
second line will actually start the music. With these two lines and the
StopMusic() call in the room_LeaveLeft function, you'll have your scary,
yet soft, music in that room.

Some other functions you should be aware of are SetMusicMasterVolume ,
SetMusicRepeat , and PlayMusicQueued . SetMusicMasterVolume
takes a number from 0 to 100 and sets the overall music volume of the game.
This volume is somewhat overridden by the volume set in each room though.
SetMusicRepeat takes either a 1 or a 0 and tells AGS whether it should repeat
the background music. 1 means keep looping it, 0 means play it once and stop.
By default, this is set to keep looping the music. PlayMusicQueued creates a
queue of different music to play one right after another. You can have up to 10
music files in the queue and AGS will play them all for you. It's like having a
juke box.

Speech
Unless you're creating a game like Myst, you'll probably want your characters to
be able to say stuff throughout your game. There are two paradigms when it
comes to speech in AGS: there's basic, scripted talking, either in response to
events that happen in the game (like when Foxy looks at things or when she
breaks the fourth wall by talking to the player) or a linear sequence of
conversation between characters (“Hi, Fred!”, “Howdy Billy, how's the
weather?”); and then there's the interactive dialog that can occur between
characters, where the player is given a choice of conversation topics and can
choose which one(s) to talk about and in which order. We'll be talking about the
first kind of speech here; the second kind is called simply “Dialogs” in AGS
parlance, and we'll cover that later in Part 2.

Speech Views
The first thing we need to do to make Foxy and Dork talk is to create a Speech
View for them. The Speech View is the animation that is displayed for the
character when that character is speaking. AGS automatically uses the character's
Speech View anytime the character is saying something, so we don't have to think
about it.

Game Design with AGS

116

We'll do Foxy's view first, so create a new view for her by right-clicking Views in
the Project Tree and click New View. Name this view vFMSpeech. Go to the
Sprites section of the Project Tree and import a new set of sprites by opening the
Foxy sprites folder, right clicking in the sprite list and selecting Import new
sprite from file.... Find the file called foxy_monk_speech.bmp and import the
twelve sprites in that file (if you need a refresher, refer back to Chapter 2 where
we imported our sprites earlier). Once those sprites have been imported, assign
them in groups of three to each of the four loops in the new view you just created.
(Again, if you need help remembering how to do this, refer back to Chapter 2.)
Finally, open the cFoxyMonk character from the Characters list in the Project
Tree, and assign this new view for the Speech View in the Properties.

Figure 5.2: Setting the SpeechView

Now do the same thing for Dork the duck, using the sprite sheet file
DorkSpeech.bmp.

The Say Function
So let's make Foxy and Dork say something already! We're going to have a short,
scripted conversation between Foxy and Dork. When the player clicks the “Talk
to” mouse cursor on Dork, Foxy will walk over to him, and the following
conversation will take place:

Foxy: Hi! My name is Foxy.
Dork: Quack, quack, quack.
Foxy: Oh, I thought you could talk.
Dork: Quaaaaaack!
Foxy: I feel silly talking to a duck.
Dork: Thanks a lot!

Yeah, it's not great, but it will do for our purposes.

Sounds and Music (Make Some Noise!)

117

Create a “Talk to” event for Dork (double-click cDork in the Project Tree, click
the Events thunderbolt icon, click the “Talk to character” event, and click the
ellipses button). This creates a new function called cDork_Talk in the global
script file. The function we'll be using to actually have the characters say stuff is
the Say function. You'll use it like this:

function cDork_Talk()
{
 cFoxyMonk.Walk(cDork.x - 20, cDork.y, eBlock,

eWalkableAreas);
 cFoxyMonk.FaceCharacter(cDork);
 cFoxyMonk.Say("Hi! My name is Foxy.");
 cDork.Say("Quack, quack, quack.");
 cFoxyMonk.Say("Oh, I thought you could talk.");
 cDork.Say("Quaaaaaack!");
 cFoxyMonk.Say("I feel silly talking to a duck.");
 cDork.Say("Thanks a lot!");
 cDork.Say("&1 Quack-quack-quack-quack quack-

quack-quack-quack!");
}

You've seen the first two lines before—they cause Foxy to walk over to where
Dork is and then turn to face him.

The next 7 lines use the Say function, and we put the text we want the character
to say in double quotation marks. AGS will animate the character with the
Speech View while the text is on the screen, and stop animating the character
when the text goes away. By default, the text goes away either with a mouse click
or after a certain time has passed proportional to the amount of text that is being
displayed. This behavior can be changed, however, in the General Settings, by
changing the value of the Allow speech to be skipped by which
events property.

One thing to note is the last line. Notice that there is a &1 and a space right
before “Quack-quack-quack-quack quack-quack-quack-quack!” This tells AGS
to play the file called Dork1.wav in the Speech folder of your file system. Look
back at the sounds section at the beginning of this chapter. Speech recordings
work the same way with the following two differences: 1) Instead of placing your
recordings in the Sound folder, you place them in the Speech folder. 2) Instead of
naming the recordings Sound1.wav, Sound2.wav, etc., they are named after the
character that speaks them. So, for Dork’s sound 1, the file name would be
Dork1.wav. This way, you can have actual speech in your game and tell AGS
which recording to play just by using the ampersand and a number. How simple
is that?

Game Design with AGS

118

Now to try it out! Run the game and click the Speech mouse cursor on Dork.
You should the conversation take place, and you should see both characters
animate while they are speaking.

NOTE TO GEORGE AND DAVE: note that foxy and dork both have the same
text color. Let’s change it to 9 which is a nice light blue color.

Summary
In this chapter, we saw how AGS allows us to use sounds and music in our game
through the use of sound effects, background music, and speech.

• Sound Effects Sound effects <BANG!> are a cool way to <POP!> give
your game some realism <WHIZZZ!> and help to engross your player
<CLAP! CLAP! CLAP!> into your game. But just
<SSSREEEEEEEEEEEEEEEK!> make sure you don't get too annoying
with <SNARF!> the sound effects or it could <BEEEEP!> cause your
players to walk away <CRUNCH CRUNCH CRUNCH CRUNCH> in
frustration!

• Background Music Every good game should have background music
and with AGS it's a simple matter to play ambient music either on a room-
by-room basis, or play music throughout your whole game.

• Speech If you have voice actors that can act out the speech in your game,
then you can add those voices by just prepending the speech lines in your
script with an ampersand (&) followed by the number of the speech file
which contains the recorded audio for that line of text.

Chapter 6

Some other stuff

If you've made it here then you should know enough to make a few games for
yourself from scratch. So, we're going to take a bit of a detour and explore a few
things that can help with the way the game plays.

General Settings
We briefly touched the General Settings editor at the beginning of this book and
promised you that we'll get to it in Chapter 6. Well we like to keep our promises,
and according to the 24 point, bold Arial font at the top right-hand corner of this
page, this is Chapter 6. The General Settings editor can be accessed by double-
clicking it from the Project Tree just like any of the other editors. This editor
allows you to specify some of the basic settings for your game, like the resolution,
the name, the maximum score the player can achieve, and some other interesting
things. There are lots of options but we're only going to talk about some of them.
We'll talk about other ones as we get to them in later chapters.

(Setup) Section
This section of the General Settings editor sets up generic things about the game
itself.
• Color depth – The color depth setting tells AGS how to interpret your images.

The higher the color depth the more colors you can have. If you set your
game to 16-bit color depth then you shouldn't make any 32-bit drawings to
import.

• Game name – This is the name that will appear in the window title bar
(assuming you run the game in a window). It's a good idea to make sure this
is actually the name of your game, and it should be by default.

• Maximum possible score – This will basically set up a globally accessible
variable that you can use to display the maximum possible score on the
screen. For example, you can have something at the top left of the screen that
says “0 of 500 points”. That 500 can be placed in the variable and accessed
anywhere. The variable's name is game.total_score . The current score
can be stored in game.score using the GiveScore() function.

• Resolution – This is the width and height of your game. Whatever you decide
to set this to is what your backgrounds should be drawn with.

Character movement Section

Game Design with AGS

120

 This section sets up how the character reacts to movement.
• Characters turn before walking – Setting this to true will make the characters

look like they're actually turning to face a new direction and then start
walking. For example, if the main character is facing down and you click
above him using the walk icon, he'll change to the side loop then the up loop
before starting to walk. If the setting was false, the character will immediately
go from the down loop to the up loop before starting to walk.

• Characters turn to face direction – This setting is just like the one above
except it's used with the function FaceLocation() . If this is true, the
when FaceLocation() is called, the character will go through the proper
loops in the view to turn to face the new location. If it's false, then the
character will simply change to the new loop immediately.

Compiler Section
This section sets up how the game executable is created. The executable is the
main file that you double-click to start the game, and ends in a .exe extension
(usually). Compiling is the process by which AGS will read the game data that
you've input and the scripts that you've written and put them together (compile
them) into a file that is the game itself, which is the game executable. Dave wrote
the game executable, and it's the best damn executable ever written, because Dave
is such an awesome programmer. He's a much better programmer than George,
that's for sure. Wait! What? That's odd since George is writing this section.
Hmmm.
• Compress the sprite file – If you have a large number of sprites in your game,

you could end up with a quite large executable. Turn this option on and your
executable will shrink. Be forewarned though, the game will run a bit slower
because it has to uncompress the sprites when it needs them. At least I think
that's what this option does!

• Enable Debug Mode – This option (true by default) is very helpful while
you're developing your game. It turns on certain shortcuts to help you see
some things or move around. Here's a list of what it can do:
◦ Press control-S to give the main character all inventory items. This is

good for testing so you don't have to walk around and pick up everything.
◦ Press control-V to see the game engine's version information.
◦ Press control-A to see all walkable areas in the room. You can't move

around or do anything but it's helpful sometimes.
◦ Press control-X and a dialog box will pop up listing all the rooms in the

game. Chose a room and you will immediately be taken there. Good for
testing changes in rooms without actually having to walk there.

◦ Press control-W to move to the closest walkable area. If you somehow
get stuck in a non-walkable area (like maybe if you use control-X and end
up inside a wall) then this will move you to the closes walkable area so
you can perform your tests.

Sounds and Music (Make Some Noise!)

121

It would be wise to turn this option off before distributing your game.
Otherwise I'll totally cheat when I play your game. <evil laugh here>.

• Split resource files into X MB-sized chunks – Normally, when you compile
your game all the resources (like the sprites for instance) are placed into the
executable. Therefore, the whole game fits into one file. If that file is too
large then you can split the resources out of it and make them into their own
files. This way, users can download small files instead of one large file. The
files will be split into MB (Megabyte) sections designated by the number you
put here.

Inventory Section
This section has a few settings that change the way the inventory looks and feels.
• Display multiple icons for multiple items – Setting this option to true will

show multiple icons in the inventory window if you have more than one of a
certain item. So, if there are three strawberries, and you pick up all three
strawberries, you will see three pictures of the strawberries in the inventory
window. If this is false, then you'll only see one picture of a strawberry and
you'll have to keep track of how many the character actually has in the code.
If you want to show some items as multiples and some not, then you'll need to
set this to false and create multiple objects in your game that represent the
same thing. Assign those objects the same sprites but give them different
variable names (like oStrawberry1 and oStrawberry2 for example).
Then you can show both objects in the inventory window whereas others will
appear only once.

• Handle inventory clicks in script – When you click on an item from the
inventory window, AGS handles the click by changing the mouse cursor to
that item and making that item the current inventory item. Cycling through
the different mouse pointers by right-clicking, you'll see that there's an extra
one that is the current inventory item. Then you can use that item on
something else in the game. So, after all that blabbing...if you don't want
AGS to do any of that and you want to handle the click yourself, then set the
option to true. AGS will then call a function in your script called
on_mouse_click() and you can do whatever with it.

• Inventory item cursor hotspot marker – This option allows you to place a
crosshair or other image on inventory items. The crosshair will appear at the
point on the item that you use as the clicking point. You can have AGS draw
a crosshair for you, or you can draw your own and assign it to it.

• Use selected inventory graphic for cursor – If you keep this true, then the
cursor will change to the item that you chose. Depending of course on what
you set as your cursor image in the inventory editor. If you set it to false then
the cursor will always look a little bag no matter what inventory item you
choose.

Saved Games Section

Game Design with AGS

122

 This section deals with how games are saved and how the computer will treat
them.
• Save games folder name – When a player saves a game it will go into a folder.

Normally this folder will be called the same name as the game, but you can
change it here if you like.

• Save screenshots in save games – Turning this on will take a snapshot of were
the player is and save it into the saved game file. That way, if using Windows
Vista+, a screen shot will appear in the game explorer of the current position
in the game.

Sound Section

 A few things to manipulate sounds of music.
• Crossfade music tracks – AGS will crossfade tracks when it switches from

one to the other.
• Play sound when the player gets points – Give this option a sound and it will

play it whenever you use the GiveScore() function to add to the player's
score.

Text output Section

 This section deals with how text and speech are shown in the game.
• Always display text as speech – If this option is on then anything displayed

with the Display() function will appear as speech said by the main
character. If it's off, then the text will just appear in the middle of the screen.

• Anti-alias TTF fonts – Anti-aliasing makes corners smoother and fonts look
better. Turning this option on will give you better looking true type fonts but
will slow the game up slightly. It's a matter of performance, but it's probably
negligible.

• Custom text-window GUI – We've already said that we'll talk about GUIs
later, and we will. Be patient. In the meantime, if you, for some reason,
looked ahead and know how to make a GUI, you can use this option to change
the default GUI for normal text in the game. Any text that is spoken or
displayed normally will use this GUI. Leaving it at 0 will leave it up to AGS,
and it will always choose its own GUI, of course.

• Custom thought bubble GUI – Just like the option above, this option will set a
GUI to use for thinking. Using the Character.Think (for example:
cFoxyMonk.Think(“Man I'm hot in this robe!”)) function
will show the thought text using this GUI.

• Fonts designed for 640x480 – Set this option to true if you created (or are
using) fonts that look better in 640x480 resolution. AGS will use this setting
to know how to scale them right.

• Write game text Right-to-left – If you translate your game to a right-to-left
language, set this to True to make the text appear from right to left instead of
left to right.

Sounds and Music (Make Some Noise!)

123

Visual Section
• Default transition when changing rooms – Transitions are fun to play with.

AGS can change what transitions are used to go from room to room. By
default it fades out the old room and then fades in the new one. That’s ok for
most people. However, it also has the following options:
◦ Instant – Don't transition; just instantly show the new room.
◦ Dissolve – The old room will dwindle out and disappear and the new room

will dwindle in.
◦ BlackBoxOut – The old room will be engulfed by a black box, and then

the new room will appear taking out the black box. Just go try it.
◦ CrossFade – The new room will fade in as the old one fades out.

• Enable letterbox mode – Make this True to show a black ribbon across the top
and bottom of the screen. Why? Because you want to.

• Pixel-perfect click detection – This is True by default and enables AGS to
figure out exactly where the player clicks using the correct point on the mouse
cursor. Setting this to False will cause AGS to draw a rectangle in the area
where the mouse was clicked and choosing the closest thing there as the
clicked item. This is good if you want your game to be less exact for some
reason. Like maybe if the mouse cursor was a shotgun for example, and you
want the click to be in the general vicinity of a bunch of stuff you want to
destroy.

• When player interface is disabled, GUIs should – Sometimes the player has to
wait for an event to happen and all controls are disabled (like during a cut
scene). In this case, AGS will cause all controls on any GUIs showing to go
gray and become un-clickable. This behavior can be changed, though, to any
of the following:
◦ Grey out all their controls – This is the default.
◦ Hide all their controls – Buttons and other controls on the GUIs will

simply disappear.
◦ Display normally – Do nothing. Just leave them be.
◦ Be hidden – GUIs will run away and hide from the player.

Summary
AGS has a whole section of the Project Tree devoted to the general settings of
your game. The settings you set here are applied globally to the whole game, and
can affect things like the resolution, the name of the game, the developer name
and website, as well as a host of other settings.

